BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 18306287)

  • 1. Effects of passivation treatments on titanium alloy with nanometric scale roughness and induced changes in fibroblast initial adhesion evaluated by a cytodetacher.
    Wang CC; Hsu YC; Su FC; Lu SC; Lee TM
    J Biomed Mater Res A; 2009 Feb; 88(2):370-83. PubMed ID: 18306287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of nanometric roughness on surface properties and fibroblast's initial cytocompatibilities of Ti6Al4V.
    Wang RC; Hsieh MC; Lee TM
    Biointerphases; 2011 Sep; 6(3):87. PubMed ID: 21974679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment.
    MacDonald DE; Rapuano BE; Deo N; Stranick M; Somasundaran P; Boskey AL
    Biomaterials; 2004 Jul; 25(16):3135-46. PubMed ID: 14980408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface characterizations of variously treated titanium materials.
    Lim YJ; Oshida Y; Andres CJ; Barco MT
    Int J Oral Maxillofac Implants; 2001; 16(3):333-42. PubMed ID: 11432653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of surface roughness of ground titanium on initial cell adhesion.
    Huang HH; Ho CT; Lee TH; Lee TL; Liao KK; Chen FL
    Biomol Eng; 2004 Nov; 21(3-5):93-7. PubMed ID: 15567102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric acid passivation does not affect in vitro biocompatibility of titanium.
    Faria AC; Beloti MM; Rosa AL
    Int J Oral Maxillofac Implants; 2003; 18(6):820-5. PubMed ID: 14696657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of titanium base alloys-biofluids interface.
    Popa MV; Demetrescu I; Suh SH; Vasilescu E; Drob P; Ionita D; Vasilescu C
    Bioelectrochemistry; 2007 Nov; 71(2):126-34. PubMed ID: 17409027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteoblast adhesion and matrix mineralization on sol-gel-derived titanium oxide.
    Advincula MC; Rahemtulla FG; Advincula RC; Ada ET; Lemons JE; Bellis SL
    Biomaterials; 2006 Apr; 27(10):2201-12. PubMed ID: 16313951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Varying Ti-6Al-4V surface roughness induces different early morphologic and molecular responses in MG63 osteoblast-like cells.
    Kim HJ; Kim SH; Kim MS; Lee EJ; Oh HG; Oh WM; Park SW; Kim WJ; Lee GJ; Choi NG; Koh JT; Dinh DB; Hardin RR; Johnson K; Sylvia VL; Schmitz JP; Dean DD
    J Biomed Mater Res A; 2005 Sep; 74(3):366-73. PubMed ID: 15983984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of nano-surface properties on initial osteoblast adhesion and Ca/P adsorption ability for titanium alloys.
    Wang CC; Hsu YC; Hsieh MC; Yang SP; Su FC; Lee TM
    Nanotechnology; 2008 Aug; 19(33):335709. PubMed ID: 21730635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel production method and in-vitro cell compatibility of porous Ti-6Al-4V alloy disk for hard tissue engineering.
    Bhattarai SR; Khalil KA; Dewidar M; Hwang PH; Yi HK; Kim HY
    J Biomed Mater Res A; 2008 Aug; 86(2):289-99. PubMed ID: 17957720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cleaning and heat-treatment effects on unalloyed titanium implant surfaces.
    Kilpadi DV; Lemons JE; Liu J; Raikar GN; Weimer JJ; Vohra Y
    Int J Oral Maxillofac Implants; 2000; 15(2):219-30. PubMed ID: 10795454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys.
    Ning C; Ding D; Dai K; Zhai W; Chen L
    Biomed Mater; 2010 Aug; 5(4):045006. PubMed ID: 20603527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic implant coatings.
    Eisenbarth E; Velten D; Breme J
    Biomol Eng; 2007 Feb; 24(1):27-32. PubMed ID: 16828342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured niobium oxide coatings influence osteoblast adhesion.
    Eisenbarth E; Velten D; Müller M; Thull R; Breme J
    J Biomed Mater Res A; 2006 Oct; 79(1):166-75. PubMed ID: 16788971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of roughness of zirconia and titanium on fibroblast adhesion.
    Takamori ER; Cruz R; Gonçalvez F; Zanetti RV; Zanetti A; Granjeiro JM
    Artif Organs; 2008 Apr; 32(4):305-9. PubMed ID: 18370945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation of proliferation, morphology and biological responses of fibroblasts on LDPE with different surface wettability.
    Kim SH; Ha HJ; Ko YK; Yoon SJ; Rhee JM; Kim MS; Lee HB; Khang G
    J Biomater Sci Polym Ed; 2007; 18(5):609-22. PubMed ID: 17550662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface properties and cell response of low metal ion release Ti-6Al-7Nb alloy after multi-step chemical and thermal treatments.
    Spriano S; Bosetti M; Bronzoni M; Vernè E; Maina G; Bergo V; Cannas M
    Biomaterials; 2005 Apr; 26(11):1219-29. PubMed ID: 15475051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of fibroblast and bacterial detachment from biomaterials using jet impingement.
    Bundy KJ; Harris LG; Rahn BA; Richards RG
    Cell Biol Int; 2001; 25(4):289-307. PubMed ID: 11319836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.