These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 18306312)
1. N-terminal CFTR missense variants severely affect the behavior of the CFTR chloride channel. Gené GG; Llobet A; Larriba S; de Semir D; Martínez I; Escalada A; Solsona C; Casals T; Aran JM Hum Mutat; 2008 May; 29(5):738-49. PubMed ID: 18306312 [TBL] [Abstract][Full Text] [Related]
2. Disease-associated mutations in cytoplasmic loops 1 and 2 of cystic fibrosis transmembrane conductance regulator impede processing or opening of the channel. Seibert FS; Jia Y; Mathews CJ; Hanrahan JW; Riordan JR; Loo TW; Clarke DM Biochemistry; 1997 Sep; 36(39):11966-74. PubMed ID: 9305991 [TBL] [Abstract][Full Text] [Related]
3. Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners. Li C; Naren AP Pharmacol Ther; 2005 Nov; 108(2):208-23. PubMed ID: 15936089 [TBL] [Abstract][Full Text] [Related]
4. Mild cystic fibrosis in patients with the rare P5L CFTR mutation. Spicuzza L; Sciuto C; Di Dio L; Mattina T; Leonardi S; del Giudice MM; La Rosa M J Cyst Fibros; 2012 Jan; 11(1):30-3. PubMed ID: 21983161 [TBL] [Abstract][Full Text] [Related]
5. Direct interaction of a small-molecule modulator with G551D-CFTR, a cystic fibrosis-causing mutation associated with severe disease. Pasyk S; Li C; Ramjeesingh M; Bear CE Biochem J; 2009 Feb; 418(1):185-90. PubMed ID: 18945216 [TBL] [Abstract][Full Text] [Related]
6. Potentiation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- currents by the chemical solvent tetrahydrofuran. Hughes LK; Ju M; Sheppard DN Mol Membr Biol; 2008 Sep; 25(6-7):528-38. PubMed ID: 18989824 [TBL] [Abstract][Full Text] [Related]
7. Discovery of alpha-aminoazaheterocycle-methylglyoxal adducts as a new class of high-affinity inhibitors of cystic fibrosis transmembrane conductance regulator chloride channels. Routaboul C; Norez C; Melin P; Molina MC; Boucherle B; Bossard F; Noel S; Robert R; Gauthier C; Becq F; Décout JL J Pharmacol Exp Ther; 2007 Sep; 322(3):1023-35. PubMed ID: 17578899 [TBL] [Abstract][Full Text] [Related]
8. The cystic fibrosis mutation G1349D within the signature motif LSHGH of NBD2 abolishes the activation of CFTR chloride channels by genistein. Melin P; Thoreau V; Norez C; Bilan F; Kitzis A; Becq F Biochem Pharmacol; 2004 Jun; 67(12):2187-96. PubMed ID: 15163550 [TBL] [Abstract][Full Text] [Related]
9. Molecular dissection of the butyrate action revealed the involvement of mitogen-activated protein kinase in cystic fibrosis transmembrane conductance regulator biogenesis. Sugita M; Kongo H; Shiba Y Mol Pharmacol; 2004 Nov; 66(5):1248-59. PubMed ID: 15304546 [TBL] [Abstract][Full Text] [Related]
10. Topogenesis of cystic fibrosis transmembrane conductance regulator (CFTR): regulation by the amino terminal transmembrane sequences. Chen M; Zhang JT Biochemistry; 1999 Apr; 38(17):5471-7. PubMed ID: 10220334 [TBL] [Abstract][Full Text] [Related]
11. Misfolding of the cystic fibrosis transmembrane conductance regulator and disease. Cheung JC; Deber CM Biochemistry; 2008 Feb; 47(6):1465-73. PubMed ID: 18193900 [TBL] [Abstract][Full Text] [Related]
12. Correctors enhance maturation of DeltaF508 CFTR by promoting interactions between the two halves of the molecule. Loo TW; Bartlett MC; Clarke DM Biochemistry; 2009 Oct; 48(41):9882-90. PubMed ID: 19761259 [TBL] [Abstract][Full Text] [Related]
13. Identification of natural coumarin compounds that rescue defective DeltaF508-CFTR chloride channel gating. Xu LN; Na WL; Liu X; Hou SG; Lin S; Yang H; Ma TH Clin Exp Pharmacol Physiol; 2008 Aug; 35(8):878-83. PubMed ID: 18430055 [TBL] [Abstract][Full Text] [Related]
14. Extent of the selectivity filter conferred by the sixth transmembrane region in the CFTR chloride channel pore. Gupta J; Lindsell P Mol Membr Biol; 2003; 20(1):45-52. PubMed ID: 12745925 [TBL] [Abstract][Full Text] [Related]
15. An unstable transmembrane segment in the cystic fibrosis transmembrane conductance regulator. Tector M; Hartl FU EMBO J; 1999 Nov; 18(22):6290-8. PubMed ID: 10562541 [TBL] [Abstract][Full Text] [Related]
16. Domain interdependence in the biosynthetic assembly of CFTR. Cui L; Aleksandrov L; Chang XB; Hou YX; He L; Hegedus T; Gentzsch M; Aleksandrov A; Balch WE; Riordan JR J Mol Biol; 2007 Jan; 365(4):981-94. PubMed ID: 17113596 [TBL] [Abstract][Full Text] [Related]
17. Biochemical implications of sequence comparisons of the cystic fibrosis transmembrane conductance regulator. Tan AL; Ong SA; Venkatesh B Arch Biochem Biophys; 2002 May; 401(2):215-22. PubMed ID: 12054472 [TBL] [Abstract][Full Text] [Related]
18. Maximization of the rate of chloride conduction in the CFTR channel pore by ion-ion interactions. Gong X; Linsdell P Arch Biochem Biophys; 2004 Jun; 426(1):78-82. PubMed ID: 15130785 [TBL] [Abstract][Full Text] [Related]
19. Functional expression of cystic fibrosis transmembrane conductance regulator in rat oviduct epithelium. Chen M; Du J; Jiang W; Zuo W; Wang F; Li M; Chan H; Zhou W Acta Biochim Biophys Sin (Shanghai); 2008 Oct; 40(10):864-72. PubMed ID: 18850051 [TBL] [Abstract][Full Text] [Related]
20. Misprocessing of the CFTR protein leads to mild cystic fibrosis phenotype. Clain J; Lehmann-Che J; Duguépéroux I; Arous N; Girodon E; Legendre M; Goossens M; Edelman A; de Braekeleer M; Teulon J; Fanen P Hum Mutat; 2005 Apr; 25(4):360-71. PubMed ID: 15776432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]