BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 18306321)

  • 1. Decreased macrophage density on carbon nanotube patterns on polycarbonate urethane.
    Kim JY; Khang D; Lee JE; Webster TJ
    J Biomed Mater Res A; 2009 Feb; 88(2):419-26. PubMed ID: 18306321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: independent role of surface nano-roughness and associated surface energy.
    Khang D; Kim SY; Liu-Snyder P; Palmore GT; Durbin SM; Webster TJ
    Biomaterials; 2007 Nov; 28(32):4756-68. PubMed ID: 17706277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced chondrocyte densities on carbon nanotube composites: the combined role of nanosurface roughness and electrical stimulation.
    Khang D; Park GE; Webster TJ
    J Biomed Mater Res A; 2008 Jul; 86(1):253-60. PubMed ID: 18186050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of spatial cell attachment on carbon nanofiber patterns on polycarbonate urethane.
    Bajaj P; Khang D; Webster TJ
    Int J Nanomedicine; 2006; 1(3):361-5. PubMed ID: 17717976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of mesenchymal stem cells and cortical neural stem cells on carbon nanotube/polycarbonate urethane.
    Nho Y; Kim JY; Khang D; Webster TJ; Lee JE
    Nanomedicine (Lond); 2010 Apr; 5(3):409-17. PubMed ID: 20394534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embedded carbon-nanotube-stiffened polymer surfaces.
    Raravikar NR; Vijayaraghavan AS; Keblinski P; Schadler LS; Ajayan PM
    Small; 2005 Mar; 1(3):317-20. PubMed ID: 17193449
    [No Abstract]   [Full Text] [Related]  

  • 7. Augmentation of acrylic bone cement with multiwall carbon nanotubes.
    Marrs B; Andrews R; Rantell T; Pienkowski D
    J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the mechanics and nanotopography of biocompatible scaffolds through dielectrophoresis with carbon nanotubes.
    Lu YL; Cheng CM; LeDuc PR; Ho MS
    Electrophoresis; 2008 Aug; 29(15):3123-7. PubMed ID: 18615410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncovalent functionalization as an alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites.
    Simmons TJ; Bult J; Hashim DP; Linhardt RJ; Ajayan PM
    ACS Nano; 2009 Apr; 3(4):865-70. PubMed ID: 19334688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo studies.
    Christenson EM; Dadsetan M; Wiggins M; Anderson JM; Hiltner A
    J Biomed Mater Res A; 2004 Jun; 69(3):407-16. PubMed ID: 15127387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotube applications for tissue engineering.
    Harrison BS; Atala A
    Biomaterials; 2007 Jan; 28(2):344-53. PubMed ID: 16934866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiwalled carbon nanotube coating on titanium.
    Terada M; Abe S; Akasaka T; Uo M; Kitagawa Y; Watari F
    Biomed Mater Eng; 2009; 19(1):45-52. PubMed ID: 19458445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer decoration on carbon nanotubes via physical vapor deposition.
    Li L; Li B; Yang G; Li CY
    Langmuir; 2007 Jul; 23(16):8522-5. PubMed ID: 17602575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser-assisted simultaneous transfer and patterning of vertically aligned carbon nanotube arrays on polymer substrates for flexible devices.
    In JB; Lee D; Fornasiero F; Noy A; Grigoropoulos CP
    ACS Nano; 2012 Sep; 6(9):7858-66. PubMed ID: 22881148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using single-walled carbon nanotubes nonwoven films as scaffolds to enhance long-term cell proliferation in vitro.
    Meng J; Song L; Meng J; Kong H; Zhu G; Wang C; Xu L; Xie S; Xu H
    J Biomed Mater Res A; 2006 Nov; 79(2):298-306. PubMed ID: 16817220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts.
    Price RL; Ellison K; Haberstroh KM; Webster TJ
    J Biomed Mater Res A; 2004 Jul; 70(1):129-38. PubMed ID: 15174117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The human macrophage response during differentiation and biodegradation on polycarbonate-based polyurethanes: dependence on hard segment chemistry.
    Labow RS; Sa D; Matheson LA; Dinnes DL; Santerre JP
    Biomaterials; 2005 Dec; 26(35):7357-66. PubMed ID: 16005062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of surface topography and cytotoxicity to the macrophage response to zinc oxide nanorods.
    Zaveri TD; Dolgova NV; Chu BH; Lee J; Wong J; Lele TP; Ren F; Keselowsky BG
    Biomaterials; 2010 Apr; 31(11):2999-3007. PubMed ID: 20074795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays.
    Shein M; Greenbaum A; Gabay T; Sorkin R; David-Pur M; Ben-Jacob E; Hanein Y
    Biomed Microdevices; 2009 Apr; 11(2):495-501. PubMed ID: 19067173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adhesion of human osteoblast-like cells (Saos-2) to carbon nanotube sheets.
    Akasaka T; Yokoyama A; Matsuoka M; Hashimoto T; Abe S; Uo M; Watari F
    Biomed Mater Eng; 2009; 19(2-3):147-53. PubMed ID: 19581708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.