These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 1830641)
1. The basolateral amygdala-ventral striatal system and conditioned place preference: further evidence of limbic-striatal interactions underlying reward-related processes. Everitt BJ; Morris KA; O'Brien A; Robbins TW Neuroscience; 1991; 42(1):1-18. PubMed ID: 1830641 [TBL] [Abstract][Full Text] [Related]
2. Effects of medial dorsal thalamic and ventral pallidal lesions on the acquisition of a conditioned place preference: further evidence for the involvement of the ventral striatopallidal system in reward-related processes. McAlonan GM; Robbins TW; Everitt BJ Neuroscience; 1993 Feb; 52(3):605-20. PubMed ID: 8450962 [TBL] [Abstract][Full Text] [Related]
3. Differential effects of excitotoxic lesions of the basolateral amygdala, ventral subiculum and medial prefrontal cortex on responding with conditioned reinforcement and locomotor activity potentiated by intra-accumbens infusions of D-amphetamine. Burns LH; Robbins TW; Everitt BJ Behav Brain Res; 1993 Jun; 55(2):167-83. PubMed ID: 8357526 [TBL] [Abstract][Full Text] [Related]
4. Limbic-striatal interactions in reward-related processes. Robbins TW; Cador M; Taylor JR; Everitt BJ Neurosci Biobehav Rev; 1989; 13(2-3):155-62. PubMed ID: 2682402 [TBL] [Abstract][Full Text] [Related]
5. Acquisition of a spatial conditioned place preference is impaired by amygdala lesions and improved by fornix lesions. White NM; McDonald RJ Behav Brain Res; 1993 Jun; 55(2):269-81. PubMed ID: 8357530 [TBL] [Abstract][Full Text] [Related]
6. Differential effects of ventral striatal lesions on the conditioned place preference induced by morphine or amphetamine. Olmstead MC; Franklin KB Neuroscience; 1996 Apr; 71(3):701-8. PubMed ID: 8867042 [TBL] [Abstract][Full Text] [Related]
7. Effects of excitotoxic lesions of the basolateral amygdala on conditional discrimination learning with primary and conditioned reinforcement. Burns LH; Everitt BJ; Robbins TW Behav Brain Res; 1999 Apr; 100(1-2):123-33. PubMed ID: 10212059 [TBL] [Abstract][Full Text] [Related]
8. Involvement of the amygdala in stimulus-reward associations: interaction with the ventral striatum. Cador M; Robbins TW; Everitt BJ Neuroscience; 1989; 30(1):77-86. PubMed ID: 2664556 [TBL] [Abstract][Full Text] [Related]
9. The neural substrates of amphetamine conditioned place preference: implications for the formation of conditioned stimulus-reward associations. Rademacher DJ; Kovacs B; Shen F; Napier TC; Meredith GE Eur J Neurosci; 2006 Oct; 24(7):2089-97. PubMed ID: 17067306 [TBL] [Abstract][Full Text] [Related]
10. Complementary roles for the amygdala and hippocampus in aversive conditioning to explicit and contextual cues. Selden NR; Everitt BJ; Jarrard LE; Robbins TW Neuroscience; 1991; 42(2):335-50. PubMed ID: 1832750 [TBL] [Abstract][Full Text] [Related]
11. Differential effects of excitotoxic lesions of the amygdala on cocaine-induced conditioned locomotion and conditioned place preference. Brown EE; Fibiger HC Psychopharmacology (Berl); 1993; 113(1):123-30. PubMed ID: 7862818 [TBL] [Abstract][Full Text] [Related]
12. Interactions between the amygdala and ventral striatum in stimulus-reward associations: studies using a second-order schedule of sexual reinforcement. Everitt BJ; Cador M; Robbins TW Neuroscience; 1989; 30(1):63-75. PubMed ID: 2664555 [TBL] [Abstract][Full Text] [Related]
13. Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems. Everitt BJ; Parkinson JA; Olmstead MC; Arroyo M; Robledo P; Robbins TW Ann N Y Acad Sci; 1999 Jun; 877():412-38. PubMed ID: 10415662 [TBL] [Abstract][Full Text] [Related]
14. Amygdaloid lesions and stimulus-reward associations in the rat. Kentridge RW; Shaw C; Aggleton JP Behav Brain Res; 1991 Jan; 42(1):57-66. PubMed ID: 2029345 [TBL] [Abstract][Full Text] [Related]
15. Effects of lesions to amygdala, ventral subiculum, medial prefrontal cortex, and nucleus accumbens on the reaction to novelty: implication for limbic-striatal interactions. Burns LH; Annett L; Kelley AE; Everitt BJ; Robbins TW Behav Neurosci; 1996 Feb; 110(1):60-73. PubMed ID: 8652073 [TBL] [Abstract][Full Text] [Related]
16. Amygdala central nucleus interacts with dorsolateral striatum to regulate the acquisition of habits. Lingawi NW; Balleine BW J Neurosci; 2012 Jan; 32(3):1073-81. PubMed ID: 22262905 [TBL] [Abstract][Full Text] [Related]
17. Effects of regional striatal lesions on motor, motivational, and executive aspects of progressive-ratio performance in rats. Eagle DM; Humby T; Dunnett SB; Robbins TW Behav Neurosci; 1999 Aug; 113(4):718-31. PubMed ID: 10495080 [TBL] [Abstract][Full Text] [Related]
18. Effects of excitotoxic lesions in the ventral striatopallidal--thalamocortical pathway on odor reversal learning: inability to extinguish an incorrect response. Ferry AT; Lu XC; Price JL Exp Brain Res; 2000 Apr; 131(3):320-35. PubMed ID: 10789947 [TBL] [Abstract][Full Text] [Related]
20. Contributions of the hippocampus, amygdala, and dorsal striatum to the response elicited by reward reduction. Salinas JA; White NM Behav Neurosci; 1998 Aug; 112(4):812-26. PubMed ID: 9733189 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]