These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

589 related articles for article (PubMed ID: 18306814)

  • 21. A study of the surface region of the Mo-V-Te-O catalysts for propane oxidation to acrylic acid.
    Guliants VV; Bhandari R; Brongersma HH; Knoester A; Gaffney AM; Han S
    J Phys Chem B; 2005 May; 109(20):10234-42. PubMed ID: 16852240
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of ultrasonic irradiation on the catalytic performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation.
    Liu H; Zhang S; Zhou Y; Zhang Y; Bai L; Huang L
    Ultrason Sonochem; 2011 Jan; 18(1):19-22. PubMed ID: 20452811
    [TBL] [Abstract][Full Text] [Related]  

  • 23. XPS and 1H NMR study of thermally stabilized Rh/CeO2 catalysts submitted to reduction/oxidation treatments.
    Force C; Roman E; Guil JM; Sanz J
    Langmuir; 2007 Apr; 23(8):4569-74. PubMed ID: 17355155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of zinc addition on the oxidation state of cobalt in Co/ZrO2 catalysts.
    Lebarbier VM; Karim AM; Engelhard MH; Wu Y; Xu BQ; Petersen EJ; Datye AK; Wang Y
    ChemSusChem; 2011 Nov; 4(11):1679-84. PubMed ID: 21919212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox properties of doped and supported copper-ceria catalysts.
    Beckers J; Rothenberg G
    Dalton Trans; 2008 Dec; (46):6573-8. PubMed ID: 19030619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation.
    Wang AQ; Chang CM; Mou CY
    J Phys Chem B; 2005 Oct; 109(40):18860-7. PubMed ID: 16853427
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The stability and catalytic performance of K-modified molybdena supported on a titanate nanostructured catalyst in the oxidative dehydrogenation of propane.
    Goudarzi E; Asadi R; Darian JT; Shahbazi Kootenaei A
    RSC Adv; 2019 Apr; 9(21):11797-11809. PubMed ID: 35517039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unsteady-state direct partial oxidation of methane to synthesis gas in a fixed-bed reactor using AFeO3 (A = La, Nd, Eu) perovskite-type oxides as oxygen storage.
    Dai XP; Li RJ; Yu CC; Hao ZP
    J Phys Chem B; 2006 Nov; 110(45):22525-31. PubMed ID: 17091997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of CeO2 doping on catalytic activity of Fe2O3/gamma-Al2O(3) catalyst for catalytic wet peroxide oxidation of azo dyes.
    Liu Y; Sun D
    J Hazard Mater; 2007 May; 143(1-2):448-54. PubMed ID: 17049725
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of MnO(x) modification on the activity and adsorption of CuO/Ce(0.67)Zr(0.33)O(2) catalyst for NO reduction.
    Liu L; Yu Q; Zhu J; Wan H; Sun K; Liu B; Zhu H; Gao F; Dong L; Chen Y
    J Colloid Interface Sci; 2010 Sep; 349(1):246-55. PubMed ID: 20557896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photocatalytic storing of O2 as H2O2 mediated by high surface area CuO. Evidence for a reductive-oxidative interfacial mechanism.
    Bandara J; Guasaquillo I; Bowen P; Soare L; Jardim WF; Kiwi J
    Langmuir; 2005 Aug; 21(18):8554-9. PubMed ID: 16114971
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monodisperse samarium and cerium orthovanadate nanocrystals and metal oxidation states on the nanocrystal surface.
    Nguyen TD; Dinh CT; Do TO
    Langmuir; 2009 Sep; 25(18):11142-8. PubMed ID: 19572496
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wet oxidation of phenol over transition metal oxide catalysts supported on Ce0.65 Zr0.35 O2 prepared by continuous hydrothermal synthesis in supercritical water.
    Kim KH; Kim JR; Ihm SK
    J Hazard Mater; 2009 Aug; 167(1-3):1158-62. PubMed ID: 19264401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Roles of surface Te, Nb, and Sb oxides in propane oxidation to acrylic acid over bulk orthorhombic Mo-V-O phase.
    Guliants VV; Bhandari R; Swaminathan B; Vasudevan VK; Brongersma HH; Knoester A; Gaffney AM; Han S
    J Phys Chem B; 2005 Dec; 109(50):24046-55. PubMed ID: 16375396
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of lattice oxygen in the oxidative dehydrogenation of ethane on alumina-supported vanadium oxide.
    Dinse A; Schomäcker R; Bell AT
    Phys Chem Chem Phys; 2009 Aug; 11(29):6119-24. PubMed ID: 19606321
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates.
    Nakka L; Molinari JE; Wachs IE
    J Am Chem Soc; 2009 Oct; 131(42):15544-54. PubMed ID: 19807071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Periodic density functional theory study of propane oxidative dehydrogenation over V2O5(001) surface.
    Fu H; Liu ZP; Li ZH; Wang WN; Fan KN
    J Am Chem Soc; 2006 Aug; 128(34):11114-23. PubMed ID: 16925429
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The efficient synthesis of a molybdenum carbide catalyst via H2-thermal treatment of a Mo(VI)-hexamethylenetetramine complex.
    Wang ZQ; Zhang ZB; Zhang MH
    Dalton Trans; 2011 Feb; 40(5):1098-104. PubMed ID: 21157590
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fischer-Tropsch synthesis on anchored Co/Nb2O5/Al2O3 catalysts: the nature of the surface and the effect on chain growth.
    Mendes FM; Perez CA; Noronha FB; Souza CD; Cesar DV; Freund HJ; Schmal M
    J Phys Chem B; 2006 May; 110(18):9155-63. PubMed ID: 16671728
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis, characterization, and photocatalytic activity of TiO(2-x)N(x) nanocatalyst.
    Wang YQ; Yu XJ; Sun DZ
    J Hazard Mater; 2007 Jun; 144(1-2):328-33. PubMed ID: 17116365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.