BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 18307352)

  • 1. Metabolic and morphological differences between rapidly proliferating cancerous and normal breast epithelial cells.
    Meadows AL; Kong B; Berdichevsky M; Roy S; Rosiva R; Blanch HW; Clark DS
    Biotechnol Prog; 2008; 24(2):334-41. PubMed ID: 18307352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of metabolic flux distributions for MDCK cell growth in glutamine- and pyruvate-containing media.
    Sidorenko Y; Wahl A; Dauner M; Genzel Y; Reichl U
    Biotechnol Prog; 2008; 24(2):311-20. PubMed ID: 18215054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic profiling by 13C-NMR spectroscopy: [1,2-13C2]glucose reveals a heterogeneous metabolism in human leukemia T cells.
    Miccheli A; Tomassini A; Puccetti C; Valerio M; Peluso G; Tuccillo F; Calvani M; Manetti C; Conti F
    Biochimie; 2006 May; 88(5):437-48. PubMed ID: 16359766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determinants of glutamine dependence and utilization by normal and tumor-derived breast cell lines.
    Collins CL; Wasa M; Souba WW; Abcouwer SF
    J Cell Physiol; 1998 Jul; 176(1):166-78. PubMed ID: 9618156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative metabolomics of breast cancer.
    Yang C; Richardson AD; Smith JW; Osterman A
    Pac Symp Biocomput; 2007; ():181-92. PubMed ID: 17990491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the central metabolism of Spodoptera frugiperda (Sf-9) and Trichoplusia ni BTI-Tn-5B1-4 (Tn-5) insect cells by radiolabeling studies.
    Benslimane C; Elias CB; Hawari J; Kamen A
    Biotechnol Prog; 2005; 21(1):78-86. PubMed ID: 15903243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic markers of breast cancer: enhanced choline metabolism and reduced choline-ether-phospholipid synthesis.
    Katz-Brull R; Seger D; Rivenson-Segal D; Rushkin E; Degani H
    Cancer Res; 2002 Apr; 62(7):1966-70. PubMed ID: 11929812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular causes of the aberrant choline phospholipid metabolism in breast cancer.
    Glunde K; Jie C; Bhujwalla ZM
    Cancer Res; 2004 Jun; 64(12):4270-6. PubMed ID: 15205341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying in vitro growth and metabolism kinetics of human mesenchymal stem cells using a mathematical model.
    Higuera G; Schop D; Janssen F; van Dijkhuizen-Radersma R; van Boxtel T; van Blitterswijk CA
    Tissue Eng Part A; 2009 Sep; 15(9):2653-63. PubMed ID: 19207045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variations in energy and phospholipid metabolism in normal and cancer human mammary epithelial cells.
    Ting YL; Sherr D; Degani H
    Anticancer Res; 1996; 16(3B):1381-8. PubMed ID: 8694505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation of energy metabolism in breast cancer brain metastases.
    Chen EI; Hewel J; Krueger JS; Tiraby C; Weber MR; Kralli A; Becker K; Yates JR; Felding-Habermann B
    Cancer Res; 2007 Feb; 67(4):1472-86. PubMed ID: 17308085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic flux analysis gives an insight on verapamil induced changes in central metabolism of HL-1 cells.
    Strigun A; Noor F; Pironti A; Niklas J; Yang TH; Heinzle E
    J Biotechnol; 2011 Sep; 155(3):299-307. PubMed ID: 21824500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyruvate utilization, phosphocholine and adenosine triphosphate (ATP) are markers of human breast tumor progression: a 31P- and 13C-nuclear magnetic resonance (NMR) spectroscopy study.
    Singer S; Souza K; Thilly WG
    Cancer Res; 1995 Nov; 55(22):5140-5. PubMed ID: 7585561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic studies of estrogen- and tamoxifen-treated human breast cancer cells by nuclear magnetic resonance spectroscopy.
    Neeman M; Degani H
    Cancer Res; 1989 Feb; 49(3):589-94. PubMed ID: 2562927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substitution of glutamine by pyruvate to reduce ammonia formation and growth inhibition of mammalian cells.
    Genzel Y; Ritter JB; König S; Alt R; Reichl U
    Biotechnol Prog; 2005; 21(1):58-69. PubMed ID: 15903241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of PER.C6 cells cultivated under fed-batch conditions at low glucose and glutamine levels.
    Maranga L; Goochee CF
    Biotechnol Bioeng; 2006 May; 94(1):139-50. PubMed ID: 16523524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal design of metabolic flux analysis experiments for anchorage-dependent mammalian cells using a cellular automaton model.
    Meadows AL; Roy S; Clark DS; Blanch HW
    Biotechnol Bioeng; 2007 Sep; 98(1):221-9. PubMed ID: 17657779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamate is preferred over glutamine for intermediary metabolism in cultured cerebellar neurons.
    Olstad E; Qu H; Sonnewald U
    J Cereb Blood Flow Metab; 2007 Apr; 27(4):811-20. PubMed ID: 17033695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of production of myoepithelial cells and basement membrane proteins but retention of response to certain growth factors and hormones by a new malignant human breast cancer cell strain.
    Rudland PS; Hallowes RC; Cox SA; Ormerod EJ; Warburton MJ
    Cancer Res; 1985 Aug; 45(8):3864-77. PubMed ID: 2410103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of intracellular fluxes in cerebellar neurons after hypoglycemia: importance of the pyruvate recycling pathway and glutamine oxidation.
    Amaral AI; Teixeira AP; Sonnewald U; Alves PM
    J Neurosci Res; 2011 May; 89(5):700-10. PubMed ID: 21337365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.