BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 18307367)

  • 1. Nanoparticle precipitation in reverse microemulsions: particle formation dynamics and tailoring of particle size distributions.
    Niemann B; Veit P; Sundmacher K
    Langmuir; 2008 Apr; 24(8):4320-8. PubMed ID: 18307367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticle formation in water-in-oil microemulsions: experiments, mechanism, and Monte Carlo simulation.
    Ethayaraja M; Dutta K; Muthukumaran D; Bandyopadhyaya R
    Langmuir; 2007 Mar; 23(6):3418-23. PubMed ID: 17305375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silver nanoparticle formation in microemulsions acting both as template and reducing agent.
    Andersson M; Pedersen JS; Palmqvist AE
    Langmuir; 2005 Nov; 21(24):11387-96. PubMed ID: 16285815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of formation of inorganic and organic nanoparticles from microemulsions.
    Destrée C; Debuigne F; Jeunieau L; Nagy JB
    Adv Colloid Interface Sci; 2006 Nov; 123-126():353-67. PubMed ID: 16860772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of microemulsion variables on copper oxide nanoparticle uptake by AOT microemulsions.
    Nassar NN; Husein MM
    J Colloid Interface Sci; 2007 Dec; 316(2):442-50. PubMed ID: 17889890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Jun; 110(1-2):49-74. PubMed ID: 15142823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of nanometer-sized In2O3 particles by a reverse microemulsion method.
    Zhan ZL; Song W; Jiang D
    J Colloid Interface Sci; 2004 Mar; 271(2):366-71. PubMed ID: 14972614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticle precipitation in microemulsions: Population balance model and identification of bivariate droplet exchange kernel.
    Niemann B; Sundmacher K
    J Colloid Interface Sci; 2010 Feb; 342(2):361-71. PubMed ID: 19942227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study and modeling of iron hydroxide nanoparticle uptake by AOT (w/o) microemulsions.
    Nassar NN; Husein MM
    Langmuir; 2007 Dec; 23(26):13093-103. PubMed ID: 18004891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel approach for the preparation of AgBr nanoparticles from their bulk solid precursor using CTAB microemulsions.
    Husein MM; Rodil E; Vera JH
    Langmuir; 2006 Feb; 22(5):2264-72. PubMed ID: 16489816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental design and multivariate analysis for optimizing poly(D,L-lactide-co-glycolide) (PLGA) nanoparticle synthesis using molecular micelles.
    Ganea GM; Sabliov CM; Ishola AO; Fakayode SO; Warner IM
    J Nanosci Nanotechnol; 2008 Jan; 8(1):280-92. PubMed ID: 18468072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Population balance models and Monte Carlo simulation for nanoparticle formation in water-in-oil microemulsions: implications for CdS synthesis.
    Ethayaraja M; Bandyopadhyaya R
    J Am Chem Soc; 2006 Dec; 128(51):17102-13. PubMed ID: 17177463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo models for nanoparticle formation in two microemulsion systems.
    Jain R; Mehra A
    Langmuir; 2004 Jul; 20(15):6507-13. PubMed ID: 15248743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of the kinetics of nanoparticle formation in microemulsions.
    de Dios M; Barroso F; Tojo C; López-Quintela MA
    J Colloid Interface Sci; 2009 May; 333(2):741-8. PubMed ID: 19215939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size fractionation in a phase-separated colloidal fluid.
    Erné BH; van den Pol E; Vroege GJ; Visser T; Wensink HH
    Langmuir; 2005 Mar; 21(5):1802-5. PubMed ID: 15723475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of Eu-Doped Y(2)O(3) Luminescent Nanoparticles in Nonionic Reverse Microemulsions.
    Lee MH; Oh SG; Yi SC
    J Colloid Interface Sci; 2000 Jun; 226(1):65-70. PubMed ID: 11401347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of recent methods for efficiently quantifying immunogold and other nanoparticles using TEM sections through cells, tissues and organs.
    Mayhew TM; Mühlfeld C; Vanhecke D; Ochs M
    Ann Anat; 2009 Apr; 191(2):153-70. PubMed ID: 19135344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies to control the particle size distribution of poly-epsilon-caprolactone nanoparticles for pharmaceutical applications.
    Lince F; Marchisio DL; Barresi AA
    J Colloid Interface Sci; 2008 Jun; 322(2):505-15. PubMed ID: 18402975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size and distribution prediction for nanoparticles produced by microemulsion precipitation: A Monte Carlo simulation study.
    Voigt A; Adityawarman D; Sundmacher K
    Nanotechnology; 2005 Jul; 16(7):S429-34. PubMed ID: 21727463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of YF3 nanoparticle formation in reverse micelles.
    Lemyre JL; Lamarre S; Beaupré A; Ritcey AM
    Langmuir; 2011 Oct; 27(19):11824-34. PubMed ID: 21842856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.