These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 18307737)

  • 1. Promoting physiological hypertrophy in the failing heart.
    Pretorius L; Owen KL; Jennings GL; McMullen JR
    Clin Exp Pharmacol Physiol; 2008 Apr; 35(4):438-41. PubMed ID: 18307737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the insulin-like growth factor 1 (IGF1)/phosphoinositide-3-kinase (PI3K) pathway mediating physiological cardiac hypertrophy.
    McMullen JR; Izumo S
    Novartis Found Symp; 2006; 274():90-111; discussion 111-7, 152-5, 272-6. PubMed ID: 17019808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure.
    McMullen JR; Jennings GL
    Clin Exp Pharmacol Physiol; 2007 Apr; 34(4):255-62. PubMed ID: 17324134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of insulin-like growth factor 1 and phosphoinositide 3-kinase in a setting of heart disease.
    McMullen JR
    Clin Exp Pharmacol Physiol; 2008 Mar; 35(3):349-54. PubMed ID: 18290876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The protective effects of exercise and phosphoinositide 3-kinase (p110alpha) in the failing heart.
    Owen KL; Pretorius L; McMullen JR
    Clin Sci (Lond); 2009 Mar; 116(5):365-75. PubMed ID: 19175355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure.
    Nakamura TY; Iwata Y; Arai Y; Komamura K; Wakabayashi S
    Circ Res; 2008 Oct; 103(8):891-9. PubMed ID: 18776042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular regulation of cardiac hypertrophy.
    Barry SP; Davidson SM; Townsend PA
    Int J Biochem Cell Biol; 2008; 40(10):2023-39. PubMed ID: 18407781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired angiotensin II-extracellular signal-regulated kinase signaling in failing human ventricular myocytes.
    Modesti PA; Serneri GG; Gamberi T; Boddi M; Coppo M; Lucchese G; Chiavarelli M; Bottai G; Marino F; Toz Gensini C; Franco Gensini G; Modesti A
    J Hypertens; 2008 Oct; 26(10):2030-9. PubMed ID: 18806628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stem cell use for cardiac diseases as of 2008.
    Ortak J; Akin I; Kische S; Nienaber CA; Ince H
    Transfus Apher Sci; 2008 Jun; 38(3):253-60. PubMed ID: 18485824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac regulation by phosphoinositide 3-kinases and PTEN.
    Oudit GY; Penninger JM
    Cardiovasc Res; 2009 May; 82(2):250-60. PubMed ID: 19147653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic remodelling of the failing heart: beneficial or detrimental?
    van Bilsen M; van Nieuwenhoven FA; van der Vusse GJ
    Cardiovasc Res; 2009 Feb; 81(3):420-8. PubMed ID: 18854380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paracrine effects of cell transplantation: modifying ventricular remodeling in the failing heart.
    Fedak PW
    Semin Thorac Cardiovasc Surg; 2008; 20(2):87-93. PubMed ID: 18707639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The imbalance between oxygen demand and supply as a potential mechanism in the pathophysiology of heart failure: the role of microvascular growth and abnormalities.
    De Boer RA; Pinto YM; Van Veldhuisen DJ
    Microcirculation; 2003 Apr; 10(2):113-26. PubMed ID: 12700580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using adult stem cells to treat heart failure--fact or fiction?
    Zimmet H; Krum H
    Heart Lung Circ; 2008; 17 Suppl 4():S48-54. PubMed ID: 19022705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of NHE-1 in myocardial hypertrophy and remodelling.
    Karmazyn M; Kilić A; Javadov S
    J Mol Cell Cardiol; 2008 Apr; 44(4):647-53. PubMed ID: 18329039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of heat shock transcriptional factor 1 and heat shock proteins in cardiac hypertrophy.
    Toko H; Minamino T; Komuro I
    Trends Cardiovasc Med; 2008 Apr; 18(3):88-93. PubMed ID: 18436146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constitutive nitric oxide synthases in the heart from hypertrophy to failure.
    Loyer X; Heymes C; Samuel JL
    Clin Exp Pharmacol Physiol; 2008 Apr; 35(4):483-8. PubMed ID: 18307746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. K(ATP) activation prevents progression of cardiac hypertrophy to failure induced by pressure overload via protecting endothelial function.
    Gao S; Long CL; Wang RH; Wang H
    Cardiovasc Res; 2009 Aug; 83(3):444-56. PubMed ID: 19304734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Molecular biology of heart failure].
    Eng-Ceceña L
    Arch Cardiol Mex; 2007; 77 Suppl 4():S4-94-105. PubMed ID: 18938705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of novel vasopressin receptor antagonists on renal function and cardiac hypertrophy in rats with experimental congestive heart failure.
    Bishara B; Shiekh H; Karram T; Rubinstein I; Azzam ZS; Abu-Saleh N; Nitecki S; Winaver J; Hoffman A; Abassi ZA
    J Pharmacol Exp Ther; 2008 Aug; 326(2):414-22. PubMed ID: 18467593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.