BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 18307991)

  • 1. Protein flexibility in psychrophilic and mesophilic trypsins. Evidence of evolutionary conservation of protein dynamics in trypsin-like serine-proteases.
    Papaleo E; Pasi M; Riccardi L; Sambi I; Fantucci P; De Gioia L
    FEBS Lett; 2008 Mar; 582(6):1008-18. PubMed ID: 18307991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic properties of extremophilic subtilisin-like serine-proteases.
    Tiberti M; Papaleo E
    J Struct Biol; 2011 Apr; 174(1):69-83. PubMed ID: 21276854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of a psychrophilic metalloprotease reveal new insights into catalysis by cold-adapted proteases.
    Aghajari N; Van Petegem F; Villeret V; Chessa JP; Gerday C; Haser R; Van Beeumen J
    Proteins; 2003 Mar; 50(4):636-47. PubMed ID: 12577270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A clade of trypsins found in cold-adapted fish.
    Roach JC
    Proteins; 2002 Apr; 47(1):31-44. PubMed ID: 11870863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative structural studies of psychrophilic and mesophilic protein homologues by molecular dynamics simulation.
    Kundu S; Roy D
    J Mol Graph Model; 2009; 27(8):871-80. PubMed ID: 19223214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative thermal unfolding study of psychrophilic and mesophilic subtilisin-like serine proteases by molecular dynamics simulations.
    Du X; Sang P; Xia YL; Li Y; Liang J; Ai SM; Ji XL; Fu YX; Liu SQ
    J Biomol Struct Dyn; 2017 May; 35(7):1500-1517. PubMed ID: 27485684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative molecular dynamics of mesophilic and psychrophilic protein homologues studied by 1.2 ns simulations.
    Brandsdal BO; Heimstad ES; Sylte I; Smalås AO
    J Biomol Struct Dyn; 1999 Dec; 17(3):493-506. PubMed ID: 10636084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of electrostatics as a strategy for cold-adaptation: a case study of cold- and warm-active elastases.
    Papaleo E; Olufsen M; De Gioia L; Brandsdal BO
    J Mol Graph Model; 2007 Jul; 26(1):93-103. PubMed ID: 17084098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural comparison of psychrophilic and mesophilic trypsins. Elucidating the molecular basis of cold-adaptation.
    Leiros HK; Willassen NP; Smalås AO
    Eur J Biochem; 2000 Feb; 267(4):1039-49. PubMed ID: 10672012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexibility and enzymatic cold-adaptation: a comparative molecular dynamics investigation of the elastase family.
    Papaleo E; Riccardi L; Villa C; Fantucci P; De Gioia L
    Biochim Biophys Acta; 2006 Aug; 1764(8):1397-406. PubMed ID: 16920043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near native-state conformational landscape of psychrophilic and mesophilic enzymes: probing the folding funnel model.
    Mereghetti P; Riccardi L; Brandsdal BO; Fantucci P; De Gioia L; Papaleo E
    J Phys Chem B; 2010 Jun; 114(22):7609-19. PubMed ID: 20518574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different roles of electrostatics in heat and in cold: adaptation by citrate synthase.
    Kumar S; Nussinov R
    Chembiochem; 2004 Mar; 5(3):280-90. PubMed ID: 14997520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural adaptation to low temperatures--analysis of the subunit interface of oligomeric psychrophilic enzymes.
    Tronelli D; Maugini E; Bossa F; Pascarella S
    FEBS J; 2007 Sep; 274(17):4595-608. PubMed ID: 17697122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold adaptation of enzyme reaction rates.
    Bjelic S; Brandsdal BO; Aqvist J
    Biochemistry; 2008 Sep; 47(38):10049-57. PubMed ID: 18759500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatics of mesophilic and psychrophilic trypsin isoenzymes: qualitative evaluation of electrostatic differences at the substrate binding site.
    Gorfe AA; Brandsdal BO; Leiros HK; Helland R; Smalås AO
    Proteins; 2000 Aug; 40(2):207-17. PubMed ID: 10842337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cold-adaptation: comparative analysis of two homologous families of psychrophilic and mesophilic signal proteins of the protozoan ciliate, Euplotes.
    Alimenti C; Vallesi A; Pedrini B; Wüthrich K; Luporini P
    IUBMB Life; 2009 Aug; 61(8):838-45. PubMed ID: 19621350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serine proteases: an ab initio molecular dynamics study.
    De Santis L; Carloni P
    Proteins; 1999 Dec; 37(4):611-8. PubMed ID: 10651276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crystal structures of the psychrophilic subtilisin S41 and the mesophilic subtilisin Sph reveal the same calcium-loaded state.
    Almog O; González A; Godin N; de Leeuw M; Mekel MJ; Klein D; Braun S; Shoham G; Walter RL
    Proteins; 2009 Feb; 74(2):489-96. PubMed ID: 18655058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence and structural parameters enhancing adaptation of proteins to low temperatures.
    Jahandideh S; Abdolmaleki P; Jahandideh M; Barzegari Asadabadi E
    J Theor Biol; 2007 May; 246(1):159-66. PubMed ID: 17275036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural insights into cold inactivation of tryptophanase and cold adaptation of subtilisin S41.
    Almog O; Kogan A; Leeuw Md; Gdalevsky GY; Cohen-Luria R; Parola AH
    Biopolymers; 2008 May; 89(5):354-9. PubMed ID: 17937401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.