These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 18308393)

  • 1. Prediction for the mixture toxicity of six organophosphorus pesticides to the luminescent bacterium Q67.
    Zhang YH; Liu SS; Song XQ; Ge HL
    Ecotoxicol Environ Saf; 2008 Nov; 71(3):880-8. PubMed ID: 18308393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the joint toxicity of five organophosphorus pesticides to Daphnia magna.
    Zeng HH; Lei CW; Zhang YH; Cao Y; Liu ZT
    Ecotoxicology; 2014 Dec; 23(10):1870-7. PubMed ID: 25209719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global concentration additivity and prediction of mixture toxicities, taking nitrobenzene derivatives as an example.
    Li T; Liu SS; Qu R; Liu HL
    Ecotoxicol Environ Saf; 2017 Oct; 144():475-481. PubMed ID: 28667859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and prediction for the acute toxicity of pesticide mixtures to the freshwater luminescent bacterium Vibrio qinghaiensis sp.-Q67.
    Zhou X; Sang W; Liu S; Zhang Y; Ge H
    J Environ Sci (China); 2010; 22(3):433-40. PubMed ID: 20614787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined photobacterium toxicity of herbicide mixtures containing one insecticide.
    Liu SS; Song XQ; Liu HL; Zhang YH; Zhang J
    Chemosphere; 2009 Apr; 75(3):381-8. PubMed ID: 19215957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurotoxicological and statistical analyses of a mixture of five organophosphorus pesticides using a ray design.
    Moser VC; Casey M; Hamm A; Carter WH; Simmons JE; Gennings C
    Toxicol Sci; 2005 Jul; 86(1):101-15. PubMed ID: 15800032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QSAR prediction of additive and non-additive mixture toxicities of antibiotics and pesticide.
    Qin LT; Chen YH; Zhang X; Mo LY; Zeng HH; Liang YP
    Chemosphere; 2018 May; 198():122-129. PubMed ID: 29421720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new effect residual ratio (ERR) method for the validation of the concentration addition and independent action models.
    Wang LJ; Liu SS; Zhang J; Li WY
    Environ Sci Pollut Res Int; 2010 Jun; 17(5):1080-9. PubMed ID: 19949878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of mixture toxicity assessment: examining the chronic toxicity of atrazine, permethrin and chlorothalonil in mixtures to Ceriodaphnia cf. dubia.
    Phyu YL; Palmer CG; Warne MS; Hose GC; Chapman JC; Lim RP
    Chemosphere; 2011 Nov; 85(10):1568-73. PubMed ID: 21925699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application and validation of approaches for the predictive hazard assessment of realistic pesticide mixtures.
    Junghans M; Backhaus T; Faust M; Scholze M; Grimme LH
    Aquat Toxicol; 2006 Feb; 76(2):93-110. PubMed ID: 16310872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicological interaction of multi-component mixtures to Vibrio qinghaiensis sp.-Q67 induced by at least three components.
    Xu YQ; Liu SS; Fan Y; Li K
    Sci Total Environ; 2018 Sep; 635():432-442. PubMed ID: 29677669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photolytic degradation of methyl-parathion and fenitrothion in ice and water: implications for cold environments.
    Weber J; Kurková R; Klánová J; Klán P; Halsall CJ
    Environ Pollut; 2009 Dec; 157(12):3308-13. PubMed ID: 19540637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative acute toxicities of selected pesticides to Anguilla anguilla.
    Ferrando MD; Sancho E; Andreu-Moliner E
    J Environ Sci Health B; 1991; 26(5-6):491-8. PubMed ID: 1723417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laboratory investigation of the toxicity and interaction of pesticide mixtures in Daphnia magna.
    George TK; Liber K
    Arch Environ Contam Toxicol; 2007 Jan; 52(1):64-72. PubMed ID: 17106792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic studies of the AOP radical-based oxidative and reductive destruction of pesticides and model compounds in water.
    Clark KK; Mezyk SP; Abbott A; Kiddle JJ
    Chemosphere; 2018 Apr; 197():193-199. PubMed ID: 29351878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study on the aqueous photodegradation of two organophosphorus pesticides under simulated and natural sunlight.
    Weber J; Halsall CJ; Wargent JJ; Paul ND
    J Environ Monit; 2009 Mar; 11(3):654-9. PubMed ID: 19280044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zero valent iron reduces toxicity and concentrations of organophosphate pesticides in contaminated groundwater.
    Fjordbøge AS; Baun A; Vastrup T; Kjeldsen P
    Chemosphere; 2013 Jan; 90(2):627-33. PubMed ID: 23021613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BNNmix: A new approach for predicting the mixture toxicity of multiple components based on the back-propagation neural network.
    Wang ZJ; Liu SS; Feng L; Xu YQ
    Sci Total Environ; 2020 Oct; 738():140317. PubMed ID: 32806371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing joint toxicity of four organophosphate and carbamate insecticides in common carp (Cyprinus carpio) using acetylcholinesterase activity as an endpoint.
    Wang Y; Chen C; Zhao X; Wang Q; Qian Y
    Pestic Biochem Physiol; 2015 Jul; 122():81-5. PubMed ID: 26071811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the combined toxicity of carbamate mixtures as well as organophosphorus mixtures to Caenorhabditis elegans using the locomotion behaviors as endpoints.
    Wang Y; Liu SS; Huang P; Wang ZJ; Xu YQ
    Sci Total Environ; 2021 Mar; 760():143378. PubMed ID: 33168241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.