These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 18308463)

  • 41. Structural coupling of 11-cis-7-methyl-retinal and amino acids at the ligand binding pocket of rhodopsin.
    Aguilà M; Toledo D; Morillo M; Dominguez M; Vaz B; Alvarez R; de Lera AR; Garriga P
    Photochem Photobiol; 2009; 85(2):485-93. PubMed ID: 19267873
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Accurate evaluation of the absorption maxima of retinal proteins based on a hybrid QM/MM method.
    Matsuura A; Sato H; Houjou H; Saito S; Hayashi T; Sakurai M
    J Comput Chem; 2006 Nov; 27(14):1623-30. PubMed ID: 16900496
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Important concepts and technology in the study of vision: measurement of ultrafast reactions by pulsed-lasers].
    Ohtani H; Kobayashi T
    Tanpakushitsu Kakusan Koso; 1989 May; 34(5):683-91. PubMed ID: 2748906
    [No Abstract]   [Full Text] [Related]  

  • 44. Signal transduction in photoreceptors.
    Langmack K; Saibil H
    Biochem Soc Trans; 1991 Nov; 19(4):858-60. PubMed ID: 1794572
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanism of rhodopsin kinase regulation by recoverin.
    Komolov KE; Senin II; Kovaleva NA; Christoph MP; Churumova VA; Grigoriev II; Akhtar M; Philippov PP; Koch KW
    J Neurochem; 2009 Jul; 110(1):72-9. PubMed ID: 19457073
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rhodopsin regeneration is accelerated via noncovalent 11-cis retinal-opsin complex--a role of retinal binding pocket of opsin.
    Matsumoto H; Yoshizawa T
    Photochem Photobiol; 2008; 84(4):985-9. PubMed ID: 18399914
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Light energy and signal transduction of proteins].
    Sugiyama Y; Mukohata Y
    Tanpakushitsu Kakusan Koso; 1994 May; 39(7):1168-75. PubMed ID: 8016346
    [No Abstract]   [Full Text] [Related]  

  • 48. Does consciousness really collapse the wave function? A possible objective biophysical resolution of the measurement problem.
    Thaheld FH
    Biosystems; 2005 Aug; 81(2):113-24. PubMed ID: 16009281
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 9-Demethylrhodopsin: theoretical evidence for a relaxed batho intermediate.
    Sugihara M; Buss V
    Biochemistry; 2008 Dec; 47(52):13733-5. PubMed ID: 19063606
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The molecular genetics of invertebrate phototransduction.
    Ranganathan R; Harris WA; Zuker CS
    Trends Neurosci; 1991 Nov; 14(11):486-93. PubMed ID: 1726765
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Reversible pH-dependent aggregation of rhodopsin molecules in photoreceptor membranes].
    Pogozheva ID; Kuznetsov VA; Livshits VA; Fedorovich IB; Ostrovskiĭ MA
    Dokl Akad Nauk SSSR; 1981; 260(5):1254-8. PubMed ID: 7307912
    [No Abstract]   [Full Text] [Related]  

  • 52. A dual-scale approach toward structure prediction of retinal proteins.
    Chen CC; Chen CM
    J Struct Biol; 2009 Jan; 165(1):37-46. PubMed ID: 19000929
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A cold break for photoreceptors.
    Essen LO; Oesterhelt D
    Nature; 1998 Mar; 392(6672):131, 133. PubMed ID: 9515955
    [No Abstract]   [Full Text] [Related]  

  • 54. Eye movements and the enhancement of edges.
    Woods SD; Rand RH; Block HD; Lewis DC
    J Math Biol; 1985; 21(3):273-83. PubMed ID: 4031694
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Light penetration and photoisomerization in rhodopsin studied by numerical simulations and double-quantum solid-state NMR spectroscopy.
    Concistrè M; Gansmüller A; McLean N; Johannessen OG; Marín Montesinos I; Bovee-Geurts PH; Brown RC; DeGrip WJ; Levitt MH
    J Am Chem Soc; 2009 May; 131(17):6133-40. PubMed ID: 19354207
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analysis of the mode-specific excited-state energy distribution and wavelength-dependent photoreaction quantum yield in rhodopsin.
    Kim JE; Tauber MJ; Mathies RA
    Biophys J; 2003 Apr; 84(4):2492-501. PubMed ID: 12668457
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of polarization on the opsin shift in rhodopsins. 2. Empirical polarization models for proteins.
    Wanko M; Hoffmann M; Frähmcke J; Frauenheim T; Elstner M
    J Phys Chem B; 2008 Sep; 112(37):11468-78. PubMed ID: 18729405
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isomerization and electronic relaxation of azobenzene after being excited to higher electronic states.
    Wang L; Xu W; Yi C; Wang X
    J Mol Graph Model; 2009 Apr; 27(7):792-6. PubMed ID: 19128994
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inherent chirality dominates the visible/near-ultraviolet CD spectrum of rhodopsin.
    Pescitelli G; Sreerama N; Salvadori P; Nakanishi K; Berova N; Woody RW
    J Am Chem Soc; 2008 May; 130(19):6170-81. PubMed ID: 18419122
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rhodopsin: structure, signal transduction and oligomerisation.
    Morris MB; Dastmalchi S; Church WB
    Int J Biochem Cell Biol; 2009 Apr; 41(4):721-4. PubMed ID: 18692154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.