These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Insect motor control: methodological advances, descending control and inter-leg coordination on the move. Borgmann A; Büschges A Curr Opin Neurobiol; 2015 Aug; 33():8-15. PubMed ID: 25579064 [TBL] [Abstract][Full Text] [Related]
4. Neurobiology: reconstructing the neural control of leg coordination. Zill SN; Keller BR Curr Biol; 2009 May; 19(9):R371-3. PubMed ID: 19439260 [TBL] [Abstract][Full Text] [Related]
5. Neural control mechanisms of the pheromone-triggered programmed behavior in male silkmoths revealed by double-labeling of descending interneurons and a motor neuron. Wada S; Kanzaki R J Comp Neurol; 2005 Apr; 484(2):168-82. PubMed ID: 15736224 [TBL] [Abstract][Full Text] [Related]
6. Central nervous mechanisms for the generation of rhythmic behaviour in arthropods. Wilson DM Symp Soc Exp Biol; 1966; 20():199-228. PubMed ID: 5958362 [No Abstract] [Full Text] [Related]
7. Premotor interneurons in the local control of stepping motor output for the stick insect single middle leg. von Uckermann G; Büschges A J Neurophysiol; 2009 Sep; 102(3):1956-75. PubMed ID: 19605613 [TBL] [Abstract][Full Text] [Related]
8. Movement control: dedicated or distributed? Hooper SL Curr Biol; 2005 Nov; 15(21):R878-80. PubMed ID: 16271860 [TBL] [Abstract][Full Text] [Related]
10. Neuropeptides associated with the regulation of feeding in insects. Audsley N; Weaver RJ Gen Comp Endocrinol; 2009 May; 162(1):93-104. PubMed ID: 18775723 [TBL] [Abstract][Full Text] [Related]
11. Load signals assist the generation of movement-dependent reflex reversal in the femur-tibia joint of stick insects. Akay T; Büschges A J Neurophysiol; 2006 Dec; 96(6):3532-7. PubMed ID: 16956989 [TBL] [Abstract][Full Text] [Related]
12. A dynamic model of thoracic differentiation for the control of turning in the stick insect. Rosano H; Webb B Biol Cybern; 2007 Sep; 97(3):229-46. PubMed ID: 17647010 [TBL] [Abstract][Full Text] [Related]
13. Computation in spinal circuitry: lessons from behaving primates. Harel R; Asher I; Cohen O; Israel Z; Shalit U; Yanai Y; Zinger N; Prut Y Behav Brain Res; 2008 Dec; 194(2):119-28. PubMed ID: 18687365 [TBL] [Abstract][Full Text] [Related]
14. Organizing network action for locomotion: insights from studying insect walking. Büschges A; Akay T; Gabriel JP; Schmidt J Brain Res Rev; 2008 Jan; 57(1):162-71. PubMed ID: 17888515 [TBL] [Abstract][Full Text] [Related]
15. Structural, functional and developmental convergence of the insect mushroom bodies with higher brain centers of vertebrates. Farris SM Brain Behav Evol; 2008; 72(1):1-15. PubMed ID: 18560208 [TBL] [Abstract][Full Text] [Related]
17. Multimodal sensory integration in insects--towards insect brain control architectures. Wessnitzer J; Webb B Bioinspir Biomim; 2006 Sep; 1(3):63-75. PubMed ID: 17671308 [TBL] [Abstract][Full Text] [Related]
18. Descending control of turning behavior in the cockroach, Blaberus discoidalis. Ridgel AL; Alexander BE; Ritzmann RE J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Apr; 193(4):385-402. PubMed ID: 17123086 [TBL] [Abstract][Full Text] [Related]
19. Tethered stick insect walking: a modified slippery surface setup with optomotor stimulation and electrical monitoring of tarsal contact. Gruhn M; Hoffmann O; Dübbert M; Scharstein H; Büschges A J Neurosci Methods; 2006 Dec; 158(2):195-206. PubMed ID: 16824615 [TBL] [Abstract][Full Text] [Related]
20. Impact of descending brain neurons on the control of stridulation, walking, and flight in orthoptera. Heinrich R Microsc Res Tech; 2002 Feb; 56(4):292-301. PubMed ID: 11877804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]