These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 18308630)

  • 41. Spinal mechanisms contribute to differences in the time to failure of submaximal fatiguing contractions performed with different loads.
    Klass M; Lévénez M; Enoka RM; Duchateau J
    J Neurophysiol; 2008 Mar; 99(3):1096-104. PubMed ID: 18184884
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fatigue-related firing of distal muscle nociceptors reduces voluntary activation of proximal muscles of the same limb.
    Kennedy DS; McNeil CJ; Gandevia SC; Taylor JL
    J Appl Physiol (1985); 2014 Feb; 116(4):385-94. PubMed ID: 24356522
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Is the human primary motor cortex activated by muscular or direction-dependent features of observed movements?
    Alaerts K; Swinnen SP; Wenderoth N
    Cortex; 2009; 45(10):1148-55. PubMed ID: 19100971
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Task-specific changes in motor evoked potentials of lower limb muscles after different training interventions.
    Beck S; Taube W; Gruber M; Amtage F; Gollhofer A; Schubert M
    Brain Res; 2007 Nov; 1179():51-60. PubMed ID: 17889840
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modulation of long-interval intracortical inhibition and the silent period by voluntary contraction.
    Hammond G; Vallence AM
    Brain Res; 2007 Jul; 1158():63-70. PubMed ID: 17559815
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of transcranial magnetic stimulation on voluntary activation in patients with quadriceps weakness.
    Urbach D; Berth A; Awiszus F
    Muscle Nerve; 2005 Aug; 32(2):164-9. PubMed ID: 15937879
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Short-term effects of electrical stimulation and voluntary activity on corticomotor excitability in healthy individuals and people with stroke.
    Taylor L; Lewis GN; Taylor D
    J Clin Neurophysiol; 2012 Jun; 29(3):237-43. PubMed ID: 22659717
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Motor cortical measures of use-dependent plasticity are graded from distal to proximal in the human upper limb.
    Krutky MA; Perreault EJ
    J Neurophysiol; 2007 Dec; 98(6):3230-41. PubMed ID: 17942623
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hysteresis effects on the input-output curve of motor evoked potentials.
    Möller C; Arai N; Lücke J; Ziemann U
    Clin Neurophysiol; 2009 May; 120(5):1003-8. PubMed ID: 19329358
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reciprocal facilitation of motor evoked potentials immediately before voluntary movements in Parkinson's disease.
    Imai T; Yamamoto T; Ohkubo Y; Kashiwagi M; Chiba S; Matsumoto H
    Electromyogr Clin Neurophysiol; 1999 Jun; 39(4):201-6. PubMed ID: 10394502
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cortical mechanisms of unilateral voluntary motor inhibition in humans.
    Begum T; Mima T; Oga T; Hara H; Satow T; Ikeda A; Nagamine T; Fukuyama H; Shibasaki H
    Neurosci Res; 2005 Dec; 53(4):428-35. PubMed ID: 16213048
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of different approaches to target force on transcranial magnetic stimulation responses.
    Gruet M; Temesi J; Rupp T; Millet GY; Verges S
    Muscle Nerve; 2013 Sep; 48(3):430-2. PubMed ID: 23853044
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Whole-body hypothermia has central and peripheral influences on elbow flexor performance.
    Cahill F; Kalmar JM; Pretorius T; Gardiner PF; Giesbrecht GG
    Exp Physiol; 2011 May; 96(5):528-38. PubMed ID: 21378082
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reliability of transcranial magnetic stimulation-related measurements of tibialis anterior muscle in healthy subjects.
    Cacchio A; Cimini N; Alosi P; Santilli V; Marrelli A
    Clin Neurophysiol; 2009 Feb; 120(2):414-9. PubMed ID: 19135412
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Factors influencing the relation between corticospinal output and muscle force during voluntary contractions.
    Gelli F; Del Santo F; Popa T; Mazzocchio R; Rossi A
    Eur J Neurosci; 2007 Jun; 25(11):3469-75. PubMed ID: 17553016
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electromyographic bursting following the cortical silent period induced by transcranial magnetic stimulation.
    Chin O; Cash RF; Thickbroom GW
    Brain Res; 2012 Mar; 1446():40-5. PubMed ID: 22330727
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Corticospinal inhibition of transmission in propriospinal-like neurones during human walking.
    Iglesias C; Nielsen JB; Marchand-Pauvert V
    Eur J Neurosci; 2008 Oct; 28(7):1351-61. PubMed ID: 18973562
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prior intention can locally tune inhibitory processes in the primary motor cortex: direct evidence from combined TMS-EEG.
    Bonnard M; Spieser L; Meziane HB; de Graaf JB; Pailhous J
    Eur J Neurosci; 2009 Sep; 30(5):913-23. PubMed ID: 19712104
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evidence for a supraspinal contribution to human muscle fatigue.
    Taylor JL; Todd G; Gandevia SC
    Clin Exp Pharmacol Physiol; 2006 Apr; 33(4):400-5. PubMed ID: 16620309
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transcranial magnetic stimulation during resistance training of the tibialis anterior muscle.
    Griffin L; Cafarelli E
    J Electromyogr Kinesiol; 2007 Aug; 17(4):446-52. PubMed ID: 16891123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.