These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

820 related articles for article (PubMed ID: 18309108)

  • 1. Role of mitochondrial dysfunction in insulin resistance.
    Kim JA; Wei Y; Sowers JR
    Circ Res; 2008 Feb; 102(4):401-14. PubMed ID: 18309108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perspectives and potential applications of mitochondria-targeted antioxidants in cardiometabolic diseases and type 2 diabetes.
    Rocha M; Apostolova N; Herance JR; Rovira-Llopis S; Hernandez-Mijares A; Victor VM
    Med Res Rev; 2014 Jan; 34(1):160-89. PubMed ID: 23650093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytosolic lipid excess-induced mitochondrial dysfunction is the cause or effect of high fat diet-induced skeletal muscle insulin resistance: a molecular insight.
    Jana BA; Chintamaneni PK; Krishnamurthy PT; Wadhwani A; Mohankumar SK
    Mol Biol Rep; 2019 Feb; 46(1):957-963. PubMed ID: 30535784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease.
    Ren J; Pulakat L; Whaley-Connell A; Sowers JR
    J Mol Med (Berl); 2010 Oct; 88(10):993-1001. PubMed ID: 20725711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Mitochondrial Dysfunction in Hypertension and Obesity.
    Lahera V; de Las Heras N; López-Farré A; Manucha W; Ferder L
    Curr Hypertens Rep; 2017 Feb; 19(2):11. PubMed ID: 28233236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deleterious action of FA metabolites on ATP synthesis: possible link between lipotoxicity, mitochondrial dysfunction, and insulin resistance.
    Abdul-Ghani MA; Muller FL; Liu Y; Chavez AO; Balas B; Zuo P; Chang Z; Tripathy D; Jani R; Molina-Carrion M; Monroy A; Folli F; Van Remmen H; DeFronzo RA
    Am J Physiol Endocrinol Metab; 2008 Sep; 295(3):E678-85. PubMed ID: 18593850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diabetes and branched-chain amino acids: What is the link?
    Bloomgarden Z
    J Diabetes; 2018 May; 10(5):350-352. PubMed ID: 29369529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal muscle insulin resistance is fundamental to the cardiometabolic syndrome.
    Nistala R; Stump CS
    J Cardiometab Syndr; 2006; 1(1):47-52. PubMed ID: 17675899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting the contribution of mitochondrial biology to the pathophysiology of skeletal muscle insulin resistance.
    Frangos SM; Bishop DJ; Holloway GP
    Biochem J; 2021 Nov; 478(21):3809-3826. PubMed ID: 34751699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Central role of the adipocyte in the insulin-sensitising and cardiovascular risk modifying actions of the thiazolidinediones.
    Smith SA
    Biochimie; 2003 Dec; 85(12):1219-30. PubMed ID: 14739074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial Dysfunction as a Factor of Energy Metabolism Disorders in Type 2 Diabetes Mellitus.
    Blagov A; Nedosugova L; Kirichenko T; Sukhorukov V; Melnichenko A; Orekhov A
    Front Biosci (Schol Ed); 2024 Mar; 16(1):5. PubMed ID: 38538341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance.
    Cooper SA; Whaley-Connell A; Habibi J; Wei Y; Lastra G; Manrique C; Stas S; Sowers JR
    Am J Physiol Heart Circ Physiol; 2007 Oct; 293(4):H2009-23. PubMed ID: 17586614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice.
    Bonnard C; Durand A; Peyrol S; Chanseaume E; Chauvin MA; Morio B; Vidal H; Rieusset J
    J Clin Invest; 2008 Feb; 118(2):789-800. PubMed ID: 18188455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diet, energy metabolism and mitochondrial biogenesis.
    Civitarese AE; Smith SR; Ravussin E
    Curr Opin Clin Nutr Metab Care; 2007 Nov; 10(6):679-87. PubMed ID: 18089947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences.
    Hong SH; Choi KM
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31941015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Mitochondrial Approach to Cardiovascular Risk and Disease.
    Veloso CD; Belew GD; Ferreira LL; Grilo LF; Jones JG; Portincasa P; Sardão VA; Oliveira PJ
    Curr Pharm Des; 2019; 25(29):3175-3194. PubMed ID: 31470786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genipin ameliorates age-related insulin resistance through inhibiting hepatic oxidative stress and mitochondrial dysfunction.
    Guan L; Feng H; Gong D; Zhao X; Cai L; Wu Q; Yuan B; Yang M; Zhao J; Zou Y
    Exp Gerontol; 2013 Dec; 48(12):1387-94. PubMed ID: 24041487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal muscle insulin resistance: role of mitochondria and other ROS sources.
    Di Meo S; Iossa S; Venditti P
    J Endocrinol; 2017 Apr; 233(1):R15-R42. PubMed ID: 28232636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities.
    Sivitz WI; Yorek MA
    Antioxid Redox Signal; 2010 Apr; 12(4):537-77. PubMed ID: 19650713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.