These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
983 related articles for article (PubMed ID: 18309263)
21. Bacterial and fungal communities in bulk soil and rhizospheres of aluminum-tolerant and aluminum-sensitive maize (Zea mays L.) lines cultivated in unlimed and limed Cerrado soil. Da Mota FF; Gomes EA; Marriel IE; Paiva E; Seldin L J Microbiol Biotechnol; 2008 May; 18(5):805-14. PubMed ID: 18633275 [TBL] [Abstract][Full Text] [Related]
22. DGGE method for analyzing 16S rDNA of methanogenic archaeal community in paddy field soil. Watanabe T; Asakawa S; Nakamura A; Nagaoka K; Kimura M FEMS Microbiol Lett; 2004 Mar; 232(2):153-63. PubMed ID: 15033234 [TBL] [Abstract][Full Text] [Related]
24. Cultivation-independent in situ molecular analysis of bacteria involved in degradation of pentachlorophenol in soil. Mahmood S; Paton GI; Prosser JI Environ Microbiol; 2005 Sep; 7(9):1349-60. PubMed ID: 16104858 [TBL] [Abstract][Full Text] [Related]
25. Diversity of iron oxidizers in wetland soils revealed by novel 16S rRNA primers targeting Gallionella-related bacteria. Wang J; Muyzer G; Bodelier PL; Laanbroek HJ ISME J; 2009 Jun; 3(6):715-25. PubMed ID: 19225553 [TBL] [Abstract][Full Text] [Related]
26. Bacterial populations colonizing and degrading rice straw in anoxic paddy soil. Weber S; Stubner S; Conrad R Appl Environ Microbiol; 2001 Mar; 67(3):1318-27. PubMed ID: 11229927 [TBL] [Abstract][Full Text] [Related]
27. Molecular analysis of bacterial community succession during prolonged compost curing. Danon M; Franke-Whittle IH; Insam H; Chen Y; Hadar Y FEMS Microbiol Ecol; 2008 Jul; 65(1):133-44. PubMed ID: 18537836 [TBL] [Abstract][Full Text] [Related]
28. Bacterial diversity in a finished compost and vermicompost: differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes. Fracchia L; Dohrmann AB; Martinotti MG; Tebbe CC Appl Microbiol Biotechnol; 2006 Aug; 71(6):942-52. PubMed ID: 16395545 [TBL] [Abstract][Full Text] [Related]
29. Differences in the rhizosphere bacterial community of a transplastomic tobacco plant compared to its non-engineered counterpart. Brinkmann N; Tebbe CC Environ Biosafety Res; 2007; 6(1-2):113-9. PubMed ID: 17961485 [TBL] [Abstract][Full Text] [Related]
30. Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. Costa R; Götz M; Mrotzek N; Lottmann J; Berg G; Smalla K FEMS Microbiol Ecol; 2006 May; 56(2):236-49. PubMed ID: 16629753 [TBL] [Abstract][Full Text] [Related]
31. Crenarchaeal community assembly and microdiversity in developing soils at two sites associated with deglaciation. Nicol GW; Tscherko D; Chang L; Hammesfahr U; Prosser JI Environ Microbiol; 2006 Aug; 8(8):1382-93. PubMed ID: 16872402 [TBL] [Abstract][Full Text] [Related]
32. Acinetobacter diversity in environmental samples assessed by 16S rRNA gene PCR-DGGE fingerprinting. Vanbroekhoven K; Ryngaert A; Wattiau P; Mot R; Springael D FEMS Microbiol Ecol; 2004 Oct; 50(1):37-50. PubMed ID: 19712375 [TBL] [Abstract][Full Text] [Related]
33. Impacts of 2,4-D application on soil microbial community structure and on populations associated with 2,4-D degradation. Macur RE; Wheeler JT; Burr MD; Inskeep WP Microbiol Res; 2007; 162(1):37-45. PubMed ID: 16814534 [TBL] [Abstract][Full Text] [Related]
34. Prokaryotic diversity in continuous cropping and rotational cropping soybean soil. Tang H; Xiao C; Ma J; Yu M; Li Y; Wang G; Zhang L FEMS Microbiol Lett; 2009 Sep; 298(2):267-73. PubMed ID: 19663913 [TBL] [Abstract][Full Text] [Related]
35. 16S rDNA analysis reveals low microbial diversity in community level physiological profile assays. Ros M; Goberna M; Pascual JA; Klammer S; Insam H J Microbiol Methods; 2008 Mar; 72(3):221-6. PubMed ID: 18258321 [TBL] [Abstract][Full Text] [Related]
36. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Nicol GW; Leininger S; Schleper C; Prosser JI Environ Microbiol; 2008 Nov; 10(11):2966-78. PubMed ID: 18707610 [TBL] [Abstract][Full Text] [Related]
37. 16S ribosomal RNA-based methods to monitor changes in the hindgut bacterial community of piglets after oral administration of Lactobacillus sobrius S1. Su Y; Yao W; Perez-Gutierrez ON; Smidt H; Zhu WY Anaerobe; 2008 Apr; 14(2):78-86. PubMed ID: 18272412 [TBL] [Abstract][Full Text] [Related]
38. Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. Turpeinen R; Kairesalo T; Häggblom MM FEMS Microbiol Ecol; 2004 Jan; 47(1):39-50. PubMed ID: 19712345 [TBL] [Abstract][Full Text] [Related]
39. Identification of cellulolytic bacteria in soil by stable isotope probing. Haichar FZ; Achouak W; Christen R; Heulin T; Marol C; Marais MF; Mougel C; Ranjard L; Balesdent J; Berge O Environ Microbiol; 2007 Mar; 9(3):625-34. PubMed ID: 17298363 [TBL] [Abstract][Full Text] [Related]
40. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Webster G; Watt LC; Rinna J; Fry JC; Evershed RP; Parkes RJ; Weightman AJ Environ Microbiol; 2006 Sep; 8(9):1575-89. PubMed ID: 16913918 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]