BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 18309360)

  • 1. Response of fermentation and sulfate reduction to experimental temperature changes in temperate and Arctic marine sediments.
    Finke N; Jørgensen BB
    ISME J; 2008 Aug; 2(8):815-29. PubMed ID: 18309360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments.
    Robador A; Brüchert V; Jørgensen BB
    Environ Microbiol; 2009 Jul; 11(7):1692-703. PubMed ID: 19292778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard.
    Finke N; Vandieken V; Jørgensen BB
    FEMS Microbiol Ecol; 2007 Jan; 59(1):10-22. PubMed ID: 17069623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico.
    Orcutt B; Samarkin V; Boetius A; Joye S
    Environ Microbiol; 2008 May; 10(5):1108-17. PubMed ID: 18218032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of freeze-thaw cycles on anaerobic microbial processes in an Arctic intertidal mud flat.
    Sawicka JE; Robador A; Hubert C; Jørgensen BB; Brüchert V
    ISME J; 2010 Apr; 4(4):585-94. PubMed ID: 20033071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen 'leakage' during methanogenesis from methanol and methylamine: implications for anaerobic carbon degradation pathways in aquatic sediments.
    Finke N; Hoehler TM; Jørgensen BB
    Environ Microbiol; 2007 Apr; 9(4):1060-71. PubMed ID: 17359276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors.
    Meulepas RJ; Jagersma CG; Gieteling J; Buisman CJ; Stams AJ; Lens PN
    Biotechnol Bioeng; 2009 Oct; 104(3):458-70. PubMed ID: 19544305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic activity of subsurface life in deep-sea sediments.
    D'Hondt S; Rutherford S; Spivack AJ
    Science; 2002 Mar; 295(5562):2067-70. PubMed ID: 11896277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark).
    Parkes RJ; Cragg BA; Banning N; Brock F; Webster G; Fry JC; Hornibrook E; Pancost RD; Kelly S; Knab N; Jørgensen BB; Rinna J; Weightman AJ
    Environ Microbiol; 2007 May; 9(5):1146-61. PubMed ID: 17472631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Microbiological and biogeochemical processes in a pockmark of the Gdansk depression, Baltic Sea].
    Pimenov NV; Ul'ianova MO; Kanapatski TA; Sivkov VV; Ivanov MV
    Mikrobiologiia; 2008; 77(5):651-9. PubMed ID: 19004347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate.
    Nauhaus K; Albrecht M; Elvert M; Boetius A; Widdel F
    Environ Microbiol; 2007 Jan; 9(1):187-96. PubMed ID: 17227423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogeochemistry. The ongoing mystery of sea-floor methane.
    Alperin M; Hoehler T
    Science; 2010 Jul; 329(5989):288-9. PubMed ID: 20647456
    [No Abstract]   [Full Text] [Related]  

  • 13. Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea.
    Wilms R; Sass H; Köpke B; Cypionka H; Engelen B
    FEMS Microbiol Ecol; 2007 Mar; 59(3):611-21. PubMed ID: 17059478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Filamentous sulfur bacteria, Beggiatoa spp., in arctic marine sediments (Svalbard, 79 degrees N).
    Jørgensen BB; Dunker R; Grünke S; Røy H
    FEMS Microbiol Ecol; 2010 Sep; 73(3):500-13. PubMed ID: 20608982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities.
    Nauhaus K; Treude T; Boetius A; Krüger M
    Environ Microbiol; 2005 Jan; 7(1):98-106. PubMed ID: 15643940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis.
    Gittel A; Mussmann M; Sass H; Cypionka H; Könneke M
    Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methyl sulfides as intermediates in the anaerobic oxidation of methane.
    Moran JJ; Beal EJ; Vrentas JM; Orphan VJ; Freeman KH; House CH
    Environ Microbiol; 2008 Jan; 10(1):162-73. PubMed ID: 17903217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Sulfate reduction and methanogenesis in the Shira and Shunet meromictic lakes (Khakass Republic, Russia)].
    Kallistova AIu; Kevbrina MV; Pimenov NV; Rusanov II; Rogozin DIu; Wehrli B; Nozhevnikova AN
    Mikrobiologiia; 2006; 75(6):828-35. PubMed ID: 17205809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermophilic anaerobes in Arctic marine sediments induced to mineralize complex organic matter at high temperature.
    Hubert C; Arnosti C; Brüchert V; Loy A; Vandieken V; Jørgensen BB
    Environ Microbiol; 2010 Apr; 12(4):1089-104. PubMed ID: 20192966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High rates of anaerobic methanotrophy at low sulfate concentrations with implications for past and present methane levels.
    Beal EJ; Claire MW; House CH
    Geobiology; 2011 Mar; 9(2):131-9. PubMed ID: 21231994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.