These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 18310118)

  • 41. The electric image in weakly electric fish: physical images of resistive objects in Gnathonemus petersii.
    Caputi AA; Budelli R; Grant K; Bell CC
    J Exp Biol; 1998 Jul; 201(Pt 14):2115-28. PubMed ID: 9639586
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sensory coding and corollary discharge effects in mormyrid electric fish.
    Bell CC
    J Exp Biol; 1989 Sep; 146():229-53. PubMed ID: 2689564
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coding of stimuli by ampullary afferents in Gnathonemus petersii.
    Engelmann J; Gertz S; Goulet J; Schuh A; von der Emde G
    J Neurophysiol; 2010 Oct; 104(4):1955-68. PubMed ID: 20685928
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neural strategies for optimal processing of sensory signals.
    Maler L
    Prog Brain Res; 2007; 165():135-54. PubMed ID: 17925244
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electric-Color Sensing in Weakly Electric Fish Suggests Color Perception as a Sensory Concept beyond Vision.
    Gottwald M; Singh N; Haubrich AN; Regett S; von der Emde G
    Curr Biol; 2018 Nov; 28(22):3648-3653.e2. PubMed ID: 30416061
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multisensory enhancement of electromotor responses to a single moving object.
    Pluta SR; Kawasaki M
    J Exp Biol; 2008 Sep; 211(Pt 18):2919-30. PubMed ID: 18775929
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrosensory interference in naturally occurring aggregates of a species of weakly electric fish, Eigenmannia virescens.
    Tan EW; Nizar JM; Carrera-G E; Fortune ES
    Behav Brain Res; 2005 Oct; 164(1):83-92. PubMed ID: 16099058
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Testosterone changes the electric organ discharge and external morphology of the mormyrid fish, Gnathonemus petersii (Mormyriformes).
    Landsman RE; Moller P
    Experientia; 1988 Oct; 44(10):900-3. PubMed ID: 3181377
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrolocation based on tail-bending movements in weakly electric fish.
    Sim M; Kim D
    J Exp Biol; 2011 Jul; 214(Pt 14):2443-50. PubMed ID: 21697437
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Representation of object's shape by multiple electric images in electrolocation.
    Fujita K; Kashimori Y
    Biol Cybern; 2019 Jun; 113(3):239-255. PubMed ID: 30627851
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Active sensing: Pre-receptor mechanisms and behavior in electric fish.
    Engelmann J; Pusch R; von der Emde G
    Commun Integr Biol; 2008; 1(1):29-31. PubMed ID: 19704784
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electric signaling behavior and the mechanisms of electric organ discharge production in mormyrid fish.
    Carlson BA
    J Physiol Paris; 2002; 96(5-6):405-19. PubMed ID: 14692489
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A study of amplitude information-frequency characteristics for underwater active electrolocation system.
    Peng J
    Bioinspir Biomim; 2015 Nov; 10(6):066007. PubMed ID: 26531142
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modeling the electric image produced by objects with complex impedance in weakly electric fish.
    Fujita K; Kashimori Y
    Biol Cybern; 2010 Aug; 103(2):105-18. PubMed ID: 20589509
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of 17alpha-methyltestosterone on sexually dimorphic characters in the weakly discharging electric fish, Brienomyrus niger (Günther, 1866) (Mormyridae): electric organ discharge, ventral body wall indentation, and anal-Fin ray bone expansion.
    Herfeld S; Moller P
    Horm Behav; 1998 Dec; 34(3):303-19. PubMed ID: 9878279
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Receptive field organization across multiple electrosensory maps. II. Computational analysis of the effects of receptive field size on prey localization.
    Maler L
    J Comp Neurol; 2009 Oct; 516(5):394-422. PubMed ID: 19655388
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrosensory capture during multisensory discrimination of nearby objects in the weakly electric fish Gnathonemus petersii.
    Schumacher S; Burt de Perera T; von der Emde G
    Sci Rep; 2017 Mar; 7():43665. PubMed ID: 28257127
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish: I. Morphology.
    Bell CC; Zakon H; Finger TE
    J Comp Neurol; 1989 Aug; 286(3):391-407. PubMed ID: 2768566
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electroreception and electrolocation in platypus.
    Scheich H; Langner G; Tidemann C; Coles RB; Guppy A
    Nature; 1986 Jan 30-Feb 5; 319(6052):401-2. PubMed ID: 3945317
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Orientation in the dark: brain circuits involved in the perception of electric signals in mormyrid electric fish.
    von der Emde G
    Eur J Morphol; 1999 Apr; 37(2-3):200-5. PubMed ID: 10342457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.