These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1831019)

  • 41. Disruption of hepatic mitochondrial bioenergetics is not a primary mechanism for the toxicity of methoprene - relevance for toxicological assessment.
    Monteiro JP; Oliveira PJ; Moreno AJ; Jurado AS
    Chemosphere; 2008 Jul; 72(9):1347-54. PubMed ID: 18511104
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Uncoupling of oxidative phosphorylation by fatty acids and detergents suppressed by ATP/ADP antiporter inhibitors].
    Brustovetskiĭ NN; Dedukhova VN; Egorova MV; Mokhova EN; Skulachev VP
    Biokhimiia; 1991 Jun; 56(6):1042-8. PubMed ID: 1932337
    [TBL] [Abstract][Full Text] [Related]  

  • 43. ATP hydrolysis induces variable porosity to mannitol in the mitochondrial inner membrane.
    Sambasivarao D; Krämer R; Rao NM; Sitaramam V
    Biochim Biophys Acta; 1988 Mar; 933(1):200-11. PubMed ID: 2894857
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Abamectin affects the bioenergetics of liver mitochondria: A potential mechanism of hepatotoxicity.
    Castanha Zanoli JC; Maioli MA; Medeiros HC; Mingatto FE
    Toxicol In Vitro; 2012 Feb; 26(1):51-6. PubMed ID: 22024101
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inhibition by suramin of mitochondrial ATP synthesis.
    Calcaterra NB; Vicario LR; Roveri OA
    Biochem Pharmacol; 1988 Jul; 37(13):2521-7. PubMed ID: 2968800
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of chronic ethanol administration on energy metabolism and phospholipase A2 activity in rat liver.
    Spach PI; Parce JW; Cunningham CC
    Biochem J; 1979 Jan; 178(1):23-33. PubMed ID: 155452
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Temperature dependence of the coupling efficiency of rat liver oxidative phosphorylation: role of adenine nucleotide translocator.
    Quentin E; Avéret N; Guérin B; Rigoulet M
    Biochem Biophys Res Commun; 1994 Jul; 202(2):816-21. PubMed ID: 8048953
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thyroid hormone-induced expression of the ADP/ATP carrier and its effect on fatty acid-induced uncoupling of oxidative phosphorylation.
    Schönfeld P; Wiêckowski MR; Wojtczak L
    FEBS Lett; 1997 Oct; 416(1):19-22. PubMed ID: 9369224
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Alteration of energy-dependent functions of liver mitochondria during the interaction of the carrier of adenine nucleotides with palmitoyl-CoA].
    Panov AV; Vavilin VA
    Vopr Med Khim; 1983; 29(5):18-21. PubMed ID: 6316660
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Disodium tetrachloropalladate (Na2PdCl4), an inhibitor of rat liver mitochondrial electron transport.
    Biagini RE; Moorman WJ; Winston GW
    Toxicol Lett; 1982 Jul; 12(2-3):165-70. PubMed ID: 6214048
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Control of mitochondrial respiration.
    Tager JM; Groen AK; Wanders RJ; Duszynski J; Westerhoff HV; Vervoorn RC
    Biochem Soc Trans; 1983 Jan; 11(1):40-3. PubMed ID: 6298025
    [No Abstract]   [Full Text] [Related]  

  • 52. Control of mitochondrial respiration. The contribution of the adenine nucleotide translocator depends on the ATP- and ADP-consuming enzymes.
    Gellerich FN; Bohnensack R; Kunz W
    Biochim Biophys Acta; 1983 Feb; 722(2):381-91. PubMed ID: 6301555
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Functional relationship between the ADP/ATP-carrier and the F1-ATPase in mitochondria.
    Vignais PV; Vignais PM; Doussiere J
    Biochim Biophys Acta; 1975 Feb; 376(2):219-30. PubMed ID: 123160
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Control of mitochondrial oxidative phosphorylation.
    Kholodenko BN
    J Theor Biol; 1984 Mar; 107(2):179-88. PubMed ID: 6717037
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Involvement of phosphate-modified ATP analogs in the reactions of oxidative phosphorylation.
    Bârzu O; Eckstein F; Dancea S; Petrescu I; Tărmure C; Ngoc LD; Hodârnău A; Mantsch HH
    Biochim Biophys Acta; 1979 Aug; 547(2):361-9. PubMed ID: 157163
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reversal of ischemic mitochondrial dysfunction.
    Mittnacht S; Sherman SC; Farber JL
    J Biol Chem; 1979 Oct; 254(19):9871-8. PubMed ID: 489578
    [No Abstract]   [Full Text] [Related]  

  • 57. Modeling of ATP-ADP steady-state exchange rate mediated by the adenine nucleotide translocase in isolated mitochondria.
    Metelkin E; Demin O; Kovács Z; Chinopoulos C
    FEBS J; 2009 Dec; 276(23):6942-55. PubMed ID: 19860824
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adenine nucleotide translocase as a site of regulation by ADP of the rat liver mitochondria permeability to H+ and K+ ions.
    Panov A; Filippova S; Lyakhovich V
    Arch Biochem Biophys; 1980 Feb; 199(2):420-6. PubMed ID: 6244779
    [No Abstract]   [Full Text] [Related]  

  • 59. Indirubin-3'-oxime impairs mitochondrial oxidative phosphorylation and prevents mitochondrial permeability transition induction.
    Varela AT; Gomes AP; Simões AM; Teodoro JS; Duarte FV; Rolo AP; Palmeira CM
    Toxicol Appl Pharmacol; 2008 Dec; 233(2):179-85. PubMed ID: 18786556
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 4-Hydroxytamoxifen induces slight uncoupling of mitochondrial oxidative phosphorylation system in relation to the deleterious effects of tamoxifen.
    Cardoso CM; Moreno AJ; Almeida LM; Custódio JB
    Toxicology; 2002 Oct; 179(3):221-32. PubMed ID: 12270594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.