These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 18310339)
1. Characterization of the periplasmic domain of MotB and implications for its role in the stator assembly of the bacterial flagellar motor. Kojima S; Furukawa Y; Matsunami H; Minamino T; Namba K J Bacteriol; 2008 May; 190(9):3314-22. PubMed ID: 18310339 [TBL] [Abstract][Full Text] [Related]
2. Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB. Kojima S; Imada K; Sakuma M; Sudo Y; Kojima C; Minamino T; Homma M; Namba K Mol Microbiol; 2009 Aug; 73(4):710-8. PubMed ID: 19627504 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the periplasmic region of PomB, a Na+-driven flagellar stator protein in Vibrio alginolyticus. Li N; Kojima S; Homma M J Bacteriol; 2011 Aug; 193(15):3773-84. PubMed ID: 21602350 [TBL] [Abstract][Full Text] [Related]
4. Deletion analysis of MotA and MotB, components of the force-generating unit in the flagellar motor of Salmonella. Muramoto K; Macnab RM Mol Microbiol; 1998 Sep; 29(5):1191-202. PubMed ID: 9767587 [TBL] [Abstract][Full Text] [Related]
5. Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor. Morimoto YV; Nakamura S; Kami-ike N; Namba K; Minamino T Mol Microbiol; 2010 Dec; 78(5):1117-29. PubMed ID: 21091499 [TBL] [Abstract][Full Text] [Related]
6. Suppressor analysis of the MotB(D33E) mutation to probe bacterial flagellar motor dynamics coupled with proton translocation. Che YS; Nakamura S; Kojima S; Kami-ike N; Namba K; Minamino T J Bacteriol; 2008 Oct; 190(20):6660-7. PubMed ID: 18723617 [TBL] [Abstract][Full Text] [Related]
7. Mot protein assembly into the bacterial flagellum: a model based on mutational analysis of the motB gene. Van Way SM; Hosking ER; Braun TF; Manson MD J Mol Biol; 2000 Mar; 297(1):7-24. PubMed ID: 10704303 [TBL] [Abstract][Full Text] [Related]
8. Motility protein interactions in the bacterial flagellar motor. Garza AG; Harris-Haller LW; Stoebner RA; Manson MD Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1970-4. PubMed ID: 7892209 [TBL] [Abstract][Full Text] [Related]
9. Effect of the MotA(M206I) Mutation on Torque Generation and Stator Assembly in the Suzuki Y; Morimoto YV; Oono K; Hayashi F; Oosawa K; Kudo S; Nakamura S J Bacteriol; 2019 Mar; 201(6):. PubMed ID: 30642987 [TBL] [Abstract][Full Text] [Related]
10. GFP Fusion to the N-Terminus of MotB Affects the Proton Channel Activity of the Bacterial Flagellar Motor in Morimoto YV; Namba K; Minamino T Biomolecules; 2020 Aug; 10(9):. PubMed ID: 32872412 [TBL] [Abstract][Full Text] [Related]
11. Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli. Braun TF; Poulson S; Gully JB; Empey JC; Van Way S; Putnam A; Blair DF J Bacteriol; 1999 Jun; 181(11):3542-51. PubMed ID: 10348868 [TBL] [Abstract][Full Text] [Related]
12. Structure and function of the bi-directional bacterial flagellar motor. Morimoto YV; Minamino T Biomolecules; 2014 Feb; 4(1):217-34. PubMed ID: 24970213 [TBL] [Abstract][Full Text] [Related]
13. Role of a conserved prolyl residue (Pro173) of MotA in the mechanochemical reaction cycle of the proton-driven flagellar motor of Salmonella. Nakamura S; Morimoto YV; Kami-ike N; Minamino T; Namba K J Mol Biol; 2009 Oct; 393(2):300-7. PubMed ID: 19683537 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of the cell wall anchor domain of MotB, a stator component of the bacterial flagellar motor: implications for peptidoglycan recognition. Roujeinikova A Proc Natl Acad Sci U S A; 2008 Jul; 105(30):10348-53. PubMed ID: 18647830 [TBL] [Abstract][Full Text] [Related]
15. An extreme clockwise switch bias mutation in fliG of Salmonella typhimurium and its suppression by slow-motile mutations in motA and motB. Togashi F; Yamaguchi S; Kihara M; Aizawa SI; Macnab RM J Bacteriol; 1997 May; 179(9):2994-3003. PubMed ID: 9139919 [TBL] [Abstract][Full Text] [Related]
16. Load-sensitive coupling of proton translocation and torque generation in the bacterial flagellar motor. Che YS; Nakamura S; Morimoto YV; Kami-Ike N; Namba K; Minamino T Mol Microbiol; 2014 Jan; 91(1):175-84. PubMed ID: 24255940 [TBL] [Abstract][Full Text] [Related]
17. Effect of the MotB(D33N) mutation on stator assembly and rotation of the proton-driven bacterial flagellar motor. Nakamura S; Minamino T; Kami-Ike N; Kudo S; Namba K Biophysics (Nagoya-shi); 2014; 10():35-41. PubMed ID: 27493496 [TBL] [Abstract][Full Text] [Related]
18. Ion-coupling determinants of Na+-driven and H+-driven flagellar motors. Asai Y; Yakushi T; Kawagishi I; Homma M J Mol Biol; 2003 Mar; 327(2):453-63. PubMed ID: 12628250 [TBL] [Abstract][Full Text] [Related]
19. Conformational change in the stator of the bacterial flagellar motor. Kojima S; Blair DF Biochemistry; 2001 Oct; 40(43):13041-50. PubMed ID: 11669642 [TBL] [Abstract][Full Text] [Related]
20. The peptidoglycan-binding (PGB) domain of the Escherichia coli pal protein can also function as the PGB domain in E. coli flagellar motor protein MotB. Hizukuri Y; Morton JF; Yakushi T; Kojima S; Homma M J Biochem; 2009 Aug; 146(2):219-29. PubMed ID: 19364805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]