These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 18311285)

  • 1. Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared microbolometer camera.
    Behnken BN; Karunasiri G; Chamberlin DR; Robrish PR; Faist J
    Opt Lett; 2008 Mar; 33(5):440-2. PubMed ID: 18311285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array.
    Lee AW; Hu Q
    Opt Lett; 2005 Oct; 30(19):2563-5. PubMed ID: 16208900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time High Resolution THz Imaging with a Fiber-Coupled Photo Conductive Antenna and an Uncooled Microbolometer Camera.
    Zolliker P; Shalaby M; Söllinger E; Mavrona E; Hack E
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34071538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compact, high average power, fiber-pumped terahertz source for active real-time imaging of concealed objects.
    Creeden D; McCarthy JC; Ketteridge PA; Schunemann PG; Southward T; Komiak JJ; Chicklis EP
    Opt Express; 2007 May; 15(10):6478-83. PubMed ID: 19546954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terahertz real-time imaging uncooled array based on antenna- and cavity-coupled bolometers.
    Simoens F; Meilhan J
    Philos Trans A Math Phys Eng Sci; 2014 Mar; 372(2012):20130111. PubMed ID: 24567477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Microbolometer System for Radiation Detection in the THz Frequency Range with a Resonating Cavity Fabricated in the CMOS Technology.
    Sesek A; Zemva A; Trontelj J
    Recent Pat Nanotechnol; 2018 Feb; 12(1):34-44. PubMed ID: 28675992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues.
    Kašalynas I; Venckevičius R; Minkevičius L; Sešek A; Wahaia F; Tamošiūnas V; Voisiat B; Seliuta D; Valušis G; Švigelj A; Trontelj J
    Sensors (Basel); 2016 Mar; 16(4):432. PubMed ID: 27023551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic Study of Terahertz Generation in Mid-Infrared Quantum Cascade Lasers.
    Jiang Y; Vijayraghavan K; Jung S; Jiang A; Kim JH; Demmerle F; Boehm G; Amann MC; Belkin MA
    Sci Rep; 2016 Feb; 6():21169. PubMed ID: 26879901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive Detection and Imaging of Human Body Radiation Using an Uncooled Field-Effect Transistor-Based THz Detector.
    Čibiraitė-Lukenskienė D; Ikamas K; Lisauskas T; Krozer V; Roskos HG; Lisauskas A
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32707924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Terahertz imaging with room-temperature terahertz difference-frequency quantum-cascade laser sources.
    Nakanishi A; Fujita K; Horita K; Takahashi H
    Opt Express; 2019 Feb; 27(3):1884-1893. PubMed ID: 30732235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terahertz holography for imaging amplitude and phase objects.
    Hack E; Zolliker P
    Opt Express; 2014 Jun; 22(13):16079-86. PubMed ID: 24977861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadly tunable terahertz generation in mid-infrared quantum cascade lasers.
    Vijayraghavan K; Jiang Y; Jang M; Jiang A; Choutagunta K; Vizbaras A; Demmerle F; Boehm G; Amann MC; Belkin MA
    Nat Commun; 2013; 4():2021. PubMed ID: 23771177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature.
    Oden J; Meilhan J; Lalanne-Dera J; Roux JF; Garet F; Coutaz JL; Simoens F
    Opt Express; 2013 Feb; 21(4):4817-25. PubMed ID: 23482016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband THz Absorption of Microbolometer Array Integrated with Split-Ring Resonators.
    Fan S; Gou J; Niu Q; Xie Z; Wang J
    Nanoscale Res Lett; 2020 Dec; 15(1):223. PubMed ID: 33270179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MEMS terahertz-to-infrared band converter using frequency selective planar metamaterial.
    Alves F; Pimental L; Grbovic D; Karunasiri G
    Sci Rep; 2018 Aug; 8(1):12466. PubMed ID: 30127458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode.
    Escorcia I; Grant J; Gough J; Cumming DR
    Opt Lett; 2016 Jul; 41(14):3261-4. PubMed ID: 27420510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers.
    Lu Q; Wu D; Sengupta S; Slivken S; Razeghi M
    Sci Rep; 2016 Mar; 6():23595. PubMed ID: 27009375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal Device Design for a Carbon Nanotube Terahertz Camera.
    Suzuki D; Ochiai Y; Kawano Y
    ACS Omega; 2018 Mar; 3(3):3540-3547. PubMed ID: 31458605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-frequency imaging using an electrically tunable terahertz quantum cascade laser.
    Dean P; Saat NK; Khanna SP; Salih M; Burnett A; Cunningham J; Linfield EH; Davies AG
    Opt Express; 2009 Nov; 17(23):20631-41. PubMed ID: 19997292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffraction-limited real-time terahertz imaging by optical frequency up-conversion in a DAST crystal.
    Fan S; Qi F; Notake T; Nawata K; Takida Y; Matsukawa T; Minamide H
    Opt Express; 2015 Mar; 23(6):7611-8. PubMed ID: 25837099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.