These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 18311641)

  • 1. Fast tools for calculation of atomic charges well suited for drug design.
    Shulga DA; Oliferenko AA; Pisarev SA; Palyulin VA; Zefirov NS
    SAR QSAR Environ Res; 2008; 19(1-2):153-65. PubMed ID: 18311641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and accurate generation of ab initio quality atomic charges using nonparametric statistical regression.
    Rai BK; Bakken GA
    J Comput Chem; 2013 Jul; 34(19):1661-71. PubMed ID: 23653432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of error-ranked singular value decomposition for the determination of potential-derived atomic-centered point charges.
    Tan JS; Boerrigter SX; Scaringe RP; Morris KR
    J Comput Chem; 2009 Apr; 30(5):733-42. PubMed ID: 18727155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting pK(a) values of substituted phenols from atomic charges: comparison of different quantum mechanical methods and charge distribution schemes.
    Svobodová Vareková R; Geidl S; Ionescu CM; Skrehota O; Kudera M; Sehnal D; Bouchal T; Abagyan R; Huber HJ; Koca J
    J Chem Inf Model; 2011 Aug; 51(8):1795-806. PubMed ID: 21761919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation.
    Jakalian A; Jack DB; Bayly CI
    J Comput Chem; 2002 Dec; 23(16):1623-41. PubMed ID: 12395429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of the intrinsic hydrogen bond acceptor strength of chemical substances from molecular structure.
    Schwöbel J; Ebert RU; Kühne R; Schüürmann G
    J Phys Chem A; 2009 Sep; 113(37):10104-12. PubMed ID: 19694415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-shell potential-derived point charges.
    Tan JS; Boerrigter SX; Scaringe RP; Morris KR
    J Comput Chem; 2012 Apr; 33(9):950-7. PubMed ID: 22302735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.
    Mobley DL; Dumont E; Chodera JD; Dill KA
    J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kirchhoff atomic charges fitted to multipole moments: implementation for a virtual screening system.
    Yakovenko O; Oliferenko AA; Bdzhola VG; Palyulin VA; Zefirov NS
    J Comput Chem; 2008 Jun; 29(8):1332-43. PubMed ID: 18172839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate conformation-dependent molecular electrostatic potentials for high-throughput in silico drug discovery.
    Puranen JS; Vainio MJ; Johnson MS
    J Comput Chem; 2010 Jun; 31(8):1722-32. PubMed ID: 20020481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio calculation of electrostatic multipoles with Wannier functions for large-scale biomolecular simulations.
    Sagui C; Pomorski P; Darden TA; Roland C
    J Chem Phys; 2004 Mar; 120(9):4530-44. PubMed ID: 15268621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronegativity equalization method: parameterization and validation for organic molecules using the Merz-Kollman-Singh charge distribution scheme.
    Jirousková Z; Vareková RS; Vanek J; Koca J
    J Comput Chem; 2009 May; 30(7):1174-8. PubMed ID: 18988249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of the intrinsic hydrogen bond acceptor strength of organic compounds by local molecular parameters.
    Schwöbel J; Ebert RU; Kühne R; Schüürmann G
    J Chem Inf Model; 2009 Apr; 49(4):956-62. PubMed ID: 19296715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic multipoles: electrostatic potential fit, local reference axis systems, and conformational dependence.
    Kramer C; Gedeck P; Meuwly M
    J Comput Chem; 2012 Jul; 33(20):1673-88. PubMed ID: 22544510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General methodology to optimize damping functions to account for charge penetration effects in electrostatic calculations using multicentered multipolar expansions.
    Werneck AS; Filho TM; Dardenne LE
    J Phys Chem A; 2008 Jan; 112(2):268-80. PubMed ID: 18095663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of free energies of hydration using CM1 and CM3 atomic charges.
    Udier-Blagović M; Morales De Tirado P; Pearlman SA; Jorgensen WL
    J Comput Chem; 2004 Aug; 25(11):1322-32. PubMed ID: 15185325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic Charge Calculator II: web-based tool for the calculation of partial atomic charges.
    Raček T; Schindler O; Toušek D; Horský V; Berka K; Koča J; Svobodová R
    Nucleic Acids Res; 2020 Jul; 48(W1):W591-W596. PubMed ID: 32402071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multipole electrostatic potential derived atomic charges in NDDO-methods with spd-basis sets.
    Horn AH; Clark T
    J Mol Model; 2007 Feb; 13(2):381-92. PubMed ID: 16924559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multipole correction of atomic monopole models of molecular charge distribution. I. Peptides.
    Sokalski WA; Keller DA; Ornstein RL; Rein R
    J Comput Chem; 1993; 14(8):970-6. PubMed ID: 11539835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.