These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 18311949)

  • 1. Electronic structure of LaF+ and LaF from frozen-core four-component relativistic multiconfigurational quasidegenerate perturbation theory.
    Moriyama H; Watanabe Y; Nakano H; Tatewaki H
    J Phys Chem A; 2008 Mar; 112(12):2683-92. PubMed ID: 18311949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic structure of CeF from frozen-core four-component relativistic multiconfigurational quasidegenerate perturbation theory.
    Tatewaki H; Yamamoto S; Watanabe Y; Nakano H
    J Chem Phys; 2008 Jun; 128(21):214901. PubMed ID: 18537445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic structures and bonding of CeF: a frozen-core four-component relativistic configuration interaction study.
    Wasada-Tsutsui Y; Watanabe Y; Tatewaki H
    J Phys Chem A; 2007 Sep; 111(36):8877-83. PubMed ID: 17705453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic structure of LaO based on frozen-core four-component relativistic multiconfigurational quasidegenerate perturbation theory.
    Moriyama H; Watanabe Y; Nakano H; Yamamoto S; Tatewaki H
    J Chem Phys; 2010 Mar; 132(12):124310. PubMed ID: 20370126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic structure of the GdF molecule by frozen-core four-component relativistic configuration interaction calculations.
    Tatewaki H; Watanabe Y; Yamamoto S; Miyoshi E
    J Chem Phys; 2006 Jul; 125(4):44309. PubMed ID: 16942144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excited states of PbF: a four-component relativistic study.
    Yamamoto S; Tatewaki H
    J Chem Phys; 2010 Feb; 132(5):054303. PubMed ID: 20136312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. O2-binding to heme: electronic structure and spectrum of oxyheme, studied by multiconfigurational methods.
    Jensen KP; Roos BO; Ryde U
    J Inorg Biochem; 2005 Jan; 99(1):45-54. PubMed ID: 15598490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multireference configuration interaction studies on higher valence and Rydberg states of OClO, ionization potentials, and electron detachment energies.
    Grein F
    J Chem Phys; 2011 Jul; 135(4):044304. PubMed ID: 21806116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic structure of ReO3Me by variable photon energy photoelectron spectroscopy, absorption spectroscopy and density functional calculations.
    de Simone M; Coreno M; Green JC; McGrady S; Pritchard H
    Inorg Chem; 2003 Mar; 42(6):1908-18. PubMed ID: 12639124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical characterization of the low-lying electronic states of NbC.
    Denis PA; Balasubramanian K
    J Chem Phys; 2005 Aug; 123(5):054318. PubMed ID: 16108650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical study of 1Sigma+ states of alkali hydride XH molecule (X = Na, K and Rb) in adiabatic and nonadiabatic representations.
    Khelifi N
    J Phys Chem A; 2009 Jul; 113(29):8425-33. PubMed ID: 19569675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A theoretical study of the ground state and lowest excited states of PuO0/+/+2 and PuO(2)0/+/+2.
    La Macchia G; Infante I; Raab J; Gibson JK; Gagliardi L
    Phys Chem Chem Phys; 2008 Dec; 10(48):7278-83. PubMed ID: 19060973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of the ground state of manganese dimer using quasidegenerate perturbation theory.
    Yamamoto S; Tatewaki H; Moriyama H; Nakano H
    J Chem Phys; 2006 Mar; 124(12):124302. PubMed ID: 16599669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate calculation of core-electron binding energies: multireference perturbation treatment.
    Shirai S; Yamamoto S; Hyodo SA
    J Chem Phys; 2004 Oct; 121(16):7586-94. PubMed ID: 15485218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic excitations of fluoroethylenes.
    Arulmozhiraja S; Ehara M; Nakatsuji H
    J Chem Phys; 2007 Jan; 126(4):044306. PubMed ID: 17286469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A theoretical study of the low-lying electronic states of the AlCCH radical and its ions.
    Liu YJ; Zhao ZX; Song MX; Zhang HX; Sun CC
    J Phys Chem A; 2010 Apr; 114(15):5035-40. PubMed ID: 20337482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relativistic complete active-space second-order perturbation theory with the four-component Dirac Hamiltonian.
    Abe M; Nakajima T; Hirao K
    J Chem Phys; 2006 Dec; 125(23):234110. PubMed ID: 17190550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ground and excited states of singlet, cation doublet, and anion doublet states of o-benzoquinone: a theoretical study.
    Honda Y; Hada M; Ehara M; Nakatsuji H
    J Phys Chem A; 2007 Apr; 111(13):2634-9. PubMed ID: 17388344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dipole allowed transitions in GdF: A four-component relativistic general open-shell configuration interaction study.
    Yamamoto S; Tatewaki H; Saue T
    J Chem Phys; 2008 Dec; 129(24):244505. PubMed ID: 19123515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.