BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

897 related articles for article (PubMed ID: 18311974)

  • 1. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture.
    Kongkanand A; Tvrdy K; Takechi K; Kuno M; Kamat PV
    J Am Chem Soc; 2008 Mar; 130(12):4007-15. PubMed ID: 18311974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced charge recombination in a co-sensitized quantum dot solar cell with two different sizes of CdSe quantum dot.
    Chen J; Lei W; Deng WQ
    Nanoscale; 2011 Feb; 3(2):674-7. PubMed ID: 21132215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate driven photochemistry of CdSe quantum dot films: charge injection and irreversible transformations on oxide surfaces.
    Tvrdy K; Kamat PV
    J Phys Chem A; 2009 Apr; 113(16):3765-72. PubMed ID: 19152253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CdSe quantum dot sensitized solar cells. Shuttling electrons through stacked carbon nanocups.
    Farrow B; Kamat PV
    J Am Chem Soc; 2009 Aug; 131(31):11124-31. PubMed ID: 19603793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films.
    Robel I; Subramanian V; Kuno M; Kamat PV
    J Am Chem Soc; 2006 Feb; 128(7):2385-93. PubMed ID: 16478194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sea urchin TiO2-nanoparticle hybrid composite photoelectrodes for CdS/CdSe/ZnS quantum-dot-sensitized solar cells.
    Kong EH; Chang YJ; Park YC; Yoon YH; Park HJ; Jang HM
    Phys Chem Chem Phys; 2012 Apr; 14(13):4620-5. PubMed ID: 22362094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aqueous-phase linker-assisted attachment of cysteinate(2-)-capped cdse quantum dots to TiO2 for quantum dot-sensitized solar cells.
    Coughlin KM; Nevins JS; Watson DF
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8649-54. PubMed ID: 23937323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronized energy and electron transfer processes in covalently linked CdSe-squaraine dye-TiO2 light harvesting assembly.
    Choi H; Santra PK; Kamat PV
    ACS Nano; 2012 Jun; 6(6):5718-26. PubMed ID: 22658983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CdSe quantum dot (QD) and molecular dye hybrid sensitizers for TiO2 mesoporous solar cells: working together with a common hole carrier of cobalt complexes.
    Lee HJ; Chang DW; Park SM; Zakeeruddin SM; Grätzel M; Nazeeruddin MK
    Chem Commun (Camb); 2010 Dec; 46(46):8788-90. PubMed ID: 20957271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave assisted CdSe quantum dot deposition on TiO2 films for dye-sensitized solar cells.
    Zhu G; Pan L; Xu T; Zhao Q; Lu B; Sun Z
    Nanoscale; 2011 May; 3(5):2188-93. PubMed ID: 21451826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of CdSe-TiO2 nanocomposites and their applications to TiO2 sensitized solar cells.
    Kim J; Choi S; Noh J; Yoon S; Lee S; Noh T; Frank AJ; Hong K
    Langmuir; 2009 May; 25(9):5348-51. PubMed ID: 19249822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells.
    Shankar K; Mor GK; Prakasam HE; Varghese OK; Grimes CA
    Langmuir; 2007 Nov; 23(24):12445-9. PubMed ID: 17958387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photo-gated charge transfer of organized assemblies of CdSe quantum dots.
    Pradhan S; Chen S; Wang S; Zou J; Kauzlarich SM; Louie AY
    Langmuir; 2006 Jan; 22(2):787-93. PubMed ID: 16401132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sonication-assisted synthesis of CdS quantum-dot-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic activity.
    Xie Y; Ali G; Yoo SH; Cho SO
    ACS Appl Mater Interfaces; 2010 Oct; 2(10):2910-4. PubMed ID: 20849087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct synthesis of CdSe nanoparticles in poly(3-hexylthiophene).
    Dayal S; Kopidakis N; Olson DC; Ginley DS; Rumbles G
    J Am Chem Soc; 2009 Dec; 131(49):17726-7. PubMed ID: 19919055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internal field switching in CdSe quantum dot films on Si.
    Sarkar SK; Cohen H; Hodes G
    J Phys Chem B; 2005 Jan; 109(1):182-7. PubMed ID: 16851002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of linear arrays of semiconductor nanoparticles on carbon single-walled nanotubes.
    Engtrakul C; Kim YH; Nedeljković JM; Ahrenkiel SP; Gilbert KE; Alleman JL; Zhang SB; Mićić OI; Nozik AJ; Heben MJ
    J Phys Chem B; 2006 Dec; 110(50):25153-7. PubMed ID: 17165958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of PbS nanoparticle-sensitized TiO₂ nanotube arrays and their photoelectrochemical properties.
    Kang Q; Liu S; Yang L; Cai Q; Grimes CA
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):746-9. PubMed ID: 21306125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed self-assembly in laponite/CdSe/polyaniline nanocomposites.
    Kehlbeck JD; Hagerman ME; Cohen BD; Eliseo J; Fox M; Hoek W; Karlin D; Leibner E; Nagle E; Nolan M; Schaefer I; Toney A; Topka M; Uluski R; Wood C
    Langmuir; 2008 Sep; 24(17):9727-38. PubMed ID: 18661961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near infrared absorption of CdSe(x)Te(1-x) alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability.
    Pan Z; Zhao K; Wang J; Zhang H; Feng Y; Zhong X
    ACS Nano; 2013 Jun; 7(6):5215-22. PubMed ID: 23705771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.