BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 18312218)

  • 1. Application of the random forest classification method to peaks detected from mass spectrometric proteomic profiles of cancer patients and controls.
    Barrett JH; Cairns DA
    Stat Appl Genet Mol Biol; 2008; 7(2):Article4. PubMed ID: 18312218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of breast cancer versus normal samples from mass spectrometry profiles using linear discriminant analysis of important features selected by random forest.
    Datta S
    Stat Appl Genet Mol Biol; 2008; 7(2):Article7. PubMed ID: 18312221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing a discrimination rule between breast cancer patients and controls using proteomics mass spectrometric data: a three-step approach.
    Heidema AG; Nagelkerke N
    Stat Appl Genet Mol Biol; 2008; 7(2):Article5. PubMed ID: 18312219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Support vector machine approach to separate control and breast cancer serum samples.
    Pham TV; van de Wiel MA; Jimenez CR
    Stat Appl Genet Mol Biol; 2008; 7(2):Article11. PubMed ID: 18312216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined experimental and statistical strategy for mass spectrometry based serum protein profiling for diagnosis of breast cancer: a case-control study.
    Callesen AK; Vach W; Jørgensen PE; Cold S; Tan Q; Depont Christensen R; Mogensen O; Kruse TA; Jensen ON; Madsen JS
    J Proteome Res; 2008 Apr; 7(4):1419-26. PubMed ID: 18303830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A classification model for the Leiden proteomics competition.
    Hoefsloot HC; Smit S; Smilde AK
    Stat Appl Genet Mol Biol; 2008; 7(2):Article8. PubMed ID: 18312222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of lung cancer patients by serum protein profiling using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry.
    Han KQ; Huang G; Gao CF; Wang XL; Ma B; Sun LQ; Wei ZJ
    Am J Clin Oncol; 2008 Apr; 31(2):133-9. PubMed ID: 18391596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feature extraction and dimensionality reduction for mass spectrometry data.
    Liu Y
    Comput Biol Med; 2009 Sep; 39(9):818-23. PubMed ID: 19646687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of serum biomarkers for nasopharyngeal carcinoma by proteomic analysis.
    Wei YS; Zheng YH; Liang WB; Zhang JZ; Yang ZH; Lv ML; Jia J; Zhang L
    Cancer; 2008 Feb; 112(3):544-51. PubMed ID: 18085639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An extended Markov blanket approach to proteomic biomarker detection from high-resolution mass spectrometry data.
    Oh JH; Gurnani P; Schorge J; Rosenblatt KP; Gao JX
    IEEE Trans Inf Technol Biomed; 2009 Mar; 13(2):195-206. PubMed ID: 19126475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic data analysis workflow for discovery of candidate biomarker peaks predictive of clinical outcome for patients with acute myeloid leukemia.
    Forshed J; Pernemalm M; Tan CS; Lindberg M; Kanter L; Pawitan Y; Lewensohn R; Stenke L; Lehtiö J
    J Proteome Res; 2008 Jun; 7(6):2332-41. PubMed ID: 18452325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic studies of early-stage and advanced ovarian cancer patients.
    Wang J; Zhang X; Ge X; Guo H; Xiong G; Zhu Y
    Gynecol Oncol; 2008 Oct; 111(1):111-9. PubMed ID: 18703221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrimination analysis of mass spectrometry proteomics for ovarian cancer detection.
    Hong YJ; Wang XD; Shen D; Zeng S
    Acta Pharmacol Sin; 2008 Oct; 29(10):1240-6. PubMed ID: 18817630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical mass spectrometry proteomic diagnosis by conformal predictors.
    Gammerman A; Nouretdinov I; Burford B; Chervonenkis A; Vovk V; Luo Z
    Stat Appl Genet Mol Biol; 2008; 7(2):Article13. PubMed ID: 18673293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching.
    Du P; Kibbe WA; Lin SM
    Bioinformatics; 2006 Sep; 22(17):2059-65. PubMed ID: 16820428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MALDI-TOF serum protein profiling for the detection of breast cancer.
    de Noo ME; Deelder A; van der Werff M; Ozalp A; Mertens B; Tollenaar R
    Onkologie; 2006 Nov; 29(11):501-6. PubMed ID: 17068384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sample classification from protein mass spectrometry, by 'peak probability contrasts'.
    Tibshirani R; Hastie T; Narasimhan B; Soltys S; Shi G; Koong A; Le QT
    Bioinformatics; 2004 Nov; 20(17):3034-44. PubMed ID: 15226172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Empirical Bayes logistic regression.
    Strimenopoulou F; Brown PJ
    Stat Appl Genet Mol Biol; 2008; 7(2):Article9. PubMed ID: 18312223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Case-control breast cancer study of MALDI-TOF proteomic mass spectrometry data on serum samples.
    van der Werff MP; Mertens B; de Noo ME; Bladergroen MR; Dalebout HC; Tollenaar RA; Deelder AM
    Stat Appl Genet Mol Biol; 2008; 7(2):Article2. PubMed ID: 18241195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variability of in situ proteomic profiling and implications for study design in colorectal tumors.
    Li JQ; Xu BJ; Shakhtour B; Deane N; Merchant N; Heslin MJ; Washington K; Coffey RJ; Beauchamp RD; Shyr Y; Billheimer D
    Int J Oncol; 2007 Jul; 31(1):103-11. PubMed ID: 17549410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.