These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 18312861)

  • 1. Isocyanide-based multicomponent reactions in drug discovery.
    Akritopoulou-Zanze I
    Curr Opin Chem Biol; 2008 Jun; 12(3):324-31. PubMed ID: 18312861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adamantane 11-beta-HSD-1 inhibitors: Application of an isocyanide multicomponent reaction.
    Sorensen B; Rohde J; Wang J; Fung S; Monzon K; Chiou W; Pan L; Deng X; Stolarik D; Frevert EU; Jacobson P; Link JT
    Bioorg Med Chem Lett; 2006 Dec; 16(23):5958-62. PubMed ID: 16996734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent developments in isocyanide based multicomponent reactions in applied chemistry.
    Dömling A
    Chem Rev; 2006 Jan; 106(1):17-89. PubMed ID: 16402771
    [No Abstract]   [Full Text] [Related]  

  • 4. Structure-based virtual screening approach to identify novel classes of PTP1B inhibitors.
    Park H; Bhattarai BR; Ham SW; Cho H
    Eur J Med Chem; 2009 Aug; 44(8):3280-4. PubMed ID: 19269068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonmevalonate terpene biosynthesis enzymes as antiinfective drug targets: substrate synthesis and high-throughput screening methods.
    Illarionova V; Kaiser J; Ostrozhenkova E; Bacher A; Fischer M; Eisenreich W; Rohdich F
    J Org Chem; 2006 Nov; 71(23):8824-34. PubMed ID: 17081012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imidazo[1,2-a]quinoxalines accessed via two sequential isocyanide-based multicomponent reactions.
    Krasavin M; Shkavrov S; Parchinsky V; Bukhryakov K
    J Org Chem; 2009 Mar; 74(6):2627-9. PubMed ID: 19215099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of mass spectrometry technologies for the discovery of low-molecular weight modulators of enzymes and protein-protein interactions.
    Zehender H; Mayr LM
    Curr Opin Chem Biol; 2007 Oct; 11(5):511-7. PubMed ID: 17931957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fishing for new antimicrobials.
    Mukhopadhyay A; Peterson RT
    Curr Opin Chem Biol; 2006 Aug; 10(4):327-33. PubMed ID: 16822704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-based virtual screening approach to identify novel classes of Cdc25B phosphatase inhibitors.
    Park H; Li M; Choi J; Cho H; Ham SW
    Bioorg Med Chem Lett; 2009 Aug; 19(15):4372-5. PubMed ID: 19500977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent progress of isocyanide-based multicomponent reactions in Iran.
    Shaabani A; Maleki A; Rezayan AH; Sarvary A
    Mol Divers; 2011 Feb; 15(1):41-68. PubMed ID: 20669047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smaller is better for antibiotic discovery.
    Waldrop GL
    ACS Chem Biol; 2009 Jun; 4(6):397-9. PubMed ID: 19537754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient isocyanide-less isocyanide-based multicomponent reactions.
    Neochoritis CG; Stotani S; Mishra B; Dömling A
    Org Lett; 2015 Apr; 17(8):2002-5. PubMed ID: 25824100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pursuing aldose reductase inhibitors through in situ cross-docking and similarity-based virtual screening.
    Cosconati S; Marinelli L; La Motta C; Sartini S; Da Settimo F; Olson AJ; Novellino E
    J Med Chem; 2009 Sep; 52(18):5578-81. PubMed ID: 19719141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel method for generating structure-based pharmacophores using energetic analysis.
    Salam NK; Nuti R; Sherman W
    J Chem Inf Model; 2009 Oct; 49(10):2356-68. PubMed ID: 19761201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based approach to pharmacophore identification, in silico screening, and three-dimensional quantitative structure-activity relationship studies for inhibitors of Trypanosoma cruzi dihydrofolate reductase function.
    Schormann N; Senkovich O; Walker K; Wright DL; Anderson AC; Rosowsky A; Ananthan S; Shinkre B; Velu S; Chattopadhyay D
    Proteins; 2008 Dec; 73(4):889-901. PubMed ID: 18536013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery and biological evaluation of novel alpha-glucosidase inhibitors with in vivo antidiabetic effect.
    Park H; Hwang KY; Kim YH; Oh KH; Lee JY; Kim K
    Bioorg Med Chem Lett; 2008 Jul; 18(13):3711-5. PubMed ID: 18524587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing the potential of chemical defenses from antimicrobial activities.
    Lu C; Shen Y
    Bioessays; 2004 Jul; 26(7):808-13. PubMed ID: 15221862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New aspects of natural products in drug discovery.
    Lam KS
    Trends Microbiol; 2007 Jun; 15(6):279-89. PubMed ID: 17433686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Library generation via postcondensation modifications of isocyanide-based multicomponent reactions.
    Hulme C; Bienaymé H; Nixey T; Chenera B; Jones W; Tempest P; Smith AL
    Methods Enzymol; 2003; 369():469-96. PubMed ID: 14722968
    [No Abstract]   [Full Text] [Related]  

  • 20. Protein-protein interactions as targets for small-molecule therapeutics in cancer.
    White AW; Westwell AD; Brahemi G
    Expert Rev Mol Med; 2008 Mar; 10():e8. PubMed ID: 18353193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.