BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 18313184)

  • 1. Interactive effects of O3 exposure on California black oak (Quercus kelloggii Newb.) seedlings with and without N amendment.
    Handley T; Grulke NE
    Environ Pollut; 2008 Nov; 156(1):53-60. PubMed ID: 18313184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. California black oak response to nitrogen amendment at a high O3, nitrogen-saturated site.
    Grulke NE; Dobrowolski W; Mingus P; Fenn ME
    Environ Pollut; 2005 Oct; 137(3):536-45. PubMed ID: 16005765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ozone exposure induces the activation of leaf senescence-related processes and morphological and growth changes in seedlings of Mediterranean tree species.
    Ribas A; Peñuelas J; Elvira S; Gimeno BS
    Environ Pollut; 2005 Mar; 134(2):291-300. PubMed ID: 15589656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ozone exposure and stomatal sluggishness in different plant physiognomic classes.
    Paoletti E; Grulke NE
    Environ Pollut; 2010 Aug; 158(8):2664-71. PubMed ID: 20537773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of calculated and measured foliar O3 flux in crop and forest species.
    Grulke NE; Paoletti E; Heath RL
    Environ Pollut; 2007 Apr; 146(3):640-7. PubMed ID: 16777298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic vs. short-term acute O3 exposure effects on nocturnal transpiration in two Californian oaks.
    Grulke NE; Paoletti E; Heath RL
    ScientificWorldJournal; 2007 Mar; 7 Suppl 1():134-40. PubMed ID: 17450290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early and late adjustments of the photosynthetic traits and stomatal density in Quercus ilex L. grown in an ozone-enriched environment.
    Fusaro L; Gerosa G; Salvatori E; Marzuoli R; Monga R; Kuzminsky E; Angelaccio C; Quarato D; Fares S
    Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():13-21. PubMed ID: 26307426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosynthetic traits of Siebold's beech and oak saplings grown under free air ozone exposure in northern Japan.
    Watanabe M; Hoshika Y; Inada N; Wang X; Mao Q; Koike T
    Environ Pollut; 2013 Mar; 174():50-6. PubMed ID: 23246746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of elevated ozone on photosynthetic CO2 exchange and chlorophyll a fluorescence in leaves of Quercus mongolica grown in urban area.
    Wang L; He X; Chen W
    Bull Environ Contam Toxicol; 2009 Apr; 82(4):478-81. PubMed ID: 19011725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosynthetic responses to elevated CO(2) and O(3) in Quercus ilex leaves at a natural CO(2) spring.
    Paoletti E; Seufert G; Della Rocca G; Thomsen H
    Environ Pollut; 2007 Jun; 147(3):516-24. PubMed ID: 17045714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient.
    Kitao M; Löw M; Heerdt C; Grams TE; Häberle KH; Matyssek R
    Environ Pollut; 2009 Feb; 157(2):537-44. PubMed ID: 18976843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drought stress does not protect Quercus ilex L. from ozone effects: results from a comparative study of two subspecies differing in ozone sensitivity.
    Alonso R; Elvira S; González-Fernández I; Calvete H; García-Gómez H; Bermejo V
    Plant Biol (Stuttg); 2014 Mar; 16(2):375-84. PubMed ID: 23890191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological responses of saplings of Caesalpinia echinata Lam., a Brazilian tree species, under ozone fumigation.
    Moraes RM; Bulbovas P; Furlan CM; Domingos M; Meirelles ST; Delitti WB; Sanz MJ
    Ecotoxicol Environ Saf; 2006 Feb; 63(2):306-12. PubMed ID: 16677915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosynthetic activity in relation to a gradient of leaf nitrogen content within a canopy of Siebold's beech and Japanese oak saplings under elevated ozone.
    Watanabe M; Hoshika Y; Inada N; Koike T
    Sci Total Environ; 2018 Sep; 636():1455-1462. PubMed ID: 29913605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of ozone impact on the gas exchange and chlorophyll fluorescence of juvenile birch stems (Betula pendula Roth.).
    Wittmann C; Matyssek R; Pfanz H; Humar M
    Environ Pollut; 2007 Nov; 150(2):258-66. PubMed ID: 17374426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moving toward effective ozone flux assessment.
    Paoletti E; Ranieri A; Lauteri M
    Environ Pollut; 2008 Nov; 156(1):16-9. PubMed ID: 18407388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ozone risk assessment for plants: central role of metabolism-dependent changes in reducing power.
    Dizengremel P; Le Thiec D; Bagard M; Jolivet Y
    Environ Pollut; 2008 Nov; 156(1):11-5. PubMed ID: 18243452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth overcompensation against O3 exposure in two Japanese oak species, Quercus mongolica var. crispula and Quercus serrata, grown under elevated CO2.
    Kitao M; Komatsu M; Yazaki K; Kitaoka S; Tobita H
    Environ Pollut; 2015 Nov; 206():133-41. PubMed ID: 26162332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A DIGE analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism.
    Bohler S; Bagard M; Oufir M; Planchon S; Hoffmann L; Jolivet Y; Hausman JF; Dizengremel P; Renaut J
    Proteomics; 2007 May; 7(10):1584-99. PubMed ID: 17486556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenogenetic response of silver birch populations and half-sib families to elevated ozone and ultraviolet-B radiation at juvenile age.
    Pliura A; Baliuckiene A; Baliuckas V
    Environ Pollut; 2008 Nov; 156(1):152-61. PubMed ID: 18262319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.