These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 183132)

  • 1. Cyclic AMP and cyclic GMP may play opposing roles in influencing force of contraction in mammalian myocardium.
    Nawrath H
    Nature; 1976 Aug; 262(5568):509-11. PubMed ID: 183132
    [No Abstract]   [Full Text] [Related]  

  • 2. Evidence for opposing influences of cyclic GMP and cyclic AMP on force of contraction in mammalian myocardium.
    Nawrath H
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():419-22. PubMed ID: 201992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opposing regulatory influences of cyclic guanosine monophosphate and cyclic adenosine monophosphate in the control of cardiac muscle contraction.
    George WJ; Busuttil RW; Paddock RJ; White LA; Ignarro LJ
    Recent Adv Stud Cardiac Struct Metab; 1975; 8():243-50. PubMed ID: 175413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of derivatives of cyclic amp and cyclic gmp on contraction force of cat papillary muscles.
    Wilkerson RD; Paddock RJ; George WJ
    Eur J Pharmacol; 1976 Mar; 36(1):247-51. PubMed ID: 177300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of cyclic GMP as a mediator of the negative inotropic effect of acetylcholine in the perfused rat heart.
    George WJ; Kadowitz PJ; Wilkerson RD
    Recent Adv Stud Cardiac Struct Metab; 1973; 3():331-9. PubMed ID: 4377605
    [No Abstract]   [Full Text] [Related]  

  • 6. Adenosine inhibits the positive inotropic effect of 3-isobutyl-1-methylxanthine in papillary muscles without effect on cyclic AMP or cyclic GMP.
    Böhm M; Brückner R; Neumann J; Nose M; Schmitz W; Scholz H
    Br J Pharmacol; 1988 Apr; 93(4):729-38. PubMed ID: 2455577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the presence and distribution of alpha-adrenoceptors in the heart of various mammalian species.
    Wagner J; Brodde OE
    Naunyn Schmiedebergs Arch Pharmacol; 1978 May; 302(3):239-54. PubMed ID: 208007
    [No Abstract]   [Full Text] [Related]  

  • 8. Involvement of cyclic nucleotides in the beating response of rat heart cells in culture.
    Ghanbari H; McCarl RL
    J Mol Cell Cardiol; 1976 Jun; 8(6):481-8. PubMed ID: 7680
    [No Abstract]   [Full Text] [Related]  

  • 9. Are increases in cyclic GMP levels responsible for the negative inotropic effects of acetylcholine in the heart?
    Diamond J; Ten Eick RE; Trapani AJ
    Biochem Biophys Res Commun; 1977 Dec; 79(3):912-8. PubMed ID: 202278
    [No Abstract]   [Full Text] [Related]  

  • 10. Inotropic responses of the frog ventricle to dibutyryl cyclic AMP and 8-bromo cyclic GMP and related changes in endogenous cyclic nucleotide levels.
    Singh J; Flitney FW
    Biochem Pharmacol; 1981 Jun; 30(12):1475-81. PubMed ID: 6268101
    [No Abstract]   [Full Text] [Related]  

  • 11. Forskolin, cyclic nucleotides and positive inotropism in isolated papillary muscles of the rabbit.
    Rodger IW; Shahid M
    Br J Pharmacol; 1984 Jan; 81(1):151-9. PubMed ID: 6322892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The role of cyclic AMP and cyclic GMP in realizing an inotropic effect of verapamil on the heart muscle].
    Bardamova IB; Afanas'ev SA
    Vopr Med Khim; 1993; 39(3):47-50. PubMed ID: 8392771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated cyclic GMP levels in rabbit atria following vagal stimulation and acetylcholine treatment.
    Fink GD; Paddock RJ; Rodgers GM; Busuttil RW; George WJ
    Proc Soc Exp Biol Med; 1976 Oct; 153(1):78-82. PubMed ID: 186802
    [No Abstract]   [Full Text] [Related]  

  • 14. Characterization of glucagon-induced changes in rate, contractility and cyclic AMP levels in isolated cardiac preparations of the rat and guinea pig.
    MacLeod KM; Rodgers RL; McNeill JH
    J Pharmacol Exp Ther; 1981 Jun; 217(3):798-804. PubMed ID: 6262497
    [No Abstract]   [Full Text] [Related]  

  • 15. Regulation of cardiac cyclic GMP-dependent protein kinase.
    Lincoln TM; Keely SL
    Biochim Biophys Acta; 1981 Aug; 676(2):230-44. PubMed ID: 6266503
    [No Abstract]   [Full Text] [Related]  

  • 16. Verapamil-induced changes in myocardial contractile force and cyclic nucleotides in the isolated perfused rat heart.
    Hancock AA; Hess ME
    Biochem Pharmacol; 1979 Sep; 28(17):2601-6. PubMed ID: 229858
    [No Abstract]   [Full Text] [Related]  

  • 17. The effects of adenosine- and guanosine 3',5'-phosphoric acid benzyl esters on guinea-pig ventricular myocardium.
    Korth M; Engels J
    Naunyn Schmiedebergs Arch Pharmacol; 1979 Dec; 310(2):103-11. PubMed ID: 93704
    [No Abstract]   [Full Text] [Related]  

  • 18. Differential responses to carbachol, sodium nitroprusside and 8-bromo-guanosine 3',5'-monophosphate of canine atrial and ventricular muscle.
    Endoh M; Yamashita S
    Br J Pharmacol; 1981 Jun; 73(2):393-9. PubMed ID: 6263387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inotropic and chronotropic effects of N6-substituted derivatives of cyclic AMP as assessed in guinea-pig isolated right atria and papillary muscle.
    Kawada T; Yoshida Y; Imai S
    Br J Pharmacol; 1989 Jun; 97(2):371-6. PubMed ID: 2547473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective phosphodiesterase inhibition and alterations of cardiac function by alkylated xanthines.
    Mushlin P; Boerth RC; Wells JN
    Mol Pharmacol; 1981 Jul; 20(1):179-89. PubMed ID: 6270531
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.