These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

523 related articles for article (PubMed ID: 18313214)

  • 21. Heavy metals speciation in soakaways sediment and evaluation of metal retention properties of surrounding soil.
    Hossain MA; Furumai H; Nakajima F; Aryal RK
    Water Sci Technol; 2007; 56(11):81-9. PubMed ID: 18057645
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of leaching tests for the study of trace metals remobilisation in soils and sediments.
    Sahuquillo A; Rigol A; Rauret G
    J Environ Monit; 2002 Dec; 4(6):1003-9. PubMed ID: 12509058
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ chemical fixation of arsenic-contaminated soils: an experimental study.
    Yang L; Donahoe RJ; Redwine JC
    Sci Total Environ; 2007 Nov; 387(1-3):28-41. PubMed ID: 17673278
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantification of the effects of environmental leaching factors on emissions from bottom ash in road construction.
    Ecke H; Aberg A
    Sci Total Environ; 2006 Jun; 362(1-3):42-9. PubMed ID: 16280152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DGT use in contaminated site characterization. The importance of heavy metal site specific behaviour.
    Ruello ML; Sileno M; Sani D; Fava G
    Chemosphere; 2008 Jan; 70(6):1135-40. PubMed ID: 17904196
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modelling assessment of regional groundwater contamination due to historic smelter emissions of heavy metals.
    van der Grift B; Griffioen J
    J Contam Hydrol; 2008 Feb; 96(1-4):48-68. PubMed ID: 18031865
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal speciation in sulphidic sediments: a new method based on oxidation kinetics modelling in the presence of EDTA.
    Vanthuyne M; Maes A
    Sci Total Environ; 2006 Aug; 367(1):405-17. PubMed ID: 16697032
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic studies on the mobility of trace elements in soil and sediment samples influenced by dumping of residues of the flood in the Mulde River region in 2002.
    Schreiber M; Otto M; Fedotov PS; Wennrich R
    Chemosphere; 2005 Sep; 61(1):107-15. PubMed ID: 16157173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heavy metal contamination of river Yamuna, Haryana, India: Assessment by Metal Enrichment Factor of the Sediments.
    Kaushik A; Kansal A; Santosh ; Meena ; Kumari S; Kaushik CP
    J Hazard Mater; 2009 May; 164(1):265-70. PubMed ID: 18809251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extension of coupled multispecies metal transport and speciation (TRANSPEC) model to soil.
    Bhavsar SP; Gandhi N; Diamond ML
    Chemosphere; 2008 Jan; 70(5):914-24. PubMed ID: 17707882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accumulation of heavy metals in the Oostriku peat bog, Estonia: determination of binding processes by means of sequential leaching.
    Syrovetnik K; Malmström ME; Neretnieks I
    Environ Pollut; 2007 May; 147(1):291-300. PubMed ID: 17267085
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heavy metals in sediments from canals for water supplying and drainage: mobilization and control strategies.
    Malferrari D; Brigatti MF; Laurora A; Pini S
    J Hazard Mater; 2009 Jan; 161(2-3):723-9. PubMed ID: 18486335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative evaluation of short-term leach tests for heavy metal release from mineral processing waste.
    Al-Abed SR; Hageman PL; Jegadeesan G; Madhavan N; Allen D
    Sci Total Environ; 2006 Jul; 364(1-3):14-23. PubMed ID: 16336991
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site.
    Concas A; Ardau C; Cristini A; Zuddas P; Cao G
    Chemosphere; 2006 Apr; 63(2):244-53. PubMed ID: 16216301
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lead leachability in stabilized/solidified soil samples evaluated with different leaching tests.
    Jing C; Meng X; Korfiatis GP
    J Hazard Mater; 2004 Oct; 114(1-3):101-10. PubMed ID: 15511579
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential influence of CO2 release from a carbon capture storage site on release of trace metals from marine sediment.
    Payán MC; Verbinnen B; Galan B; Coz A; Vandecasteele C; Viguri JR
    Environ Pollut; 2012 Mar; 162():29-39. PubMed ID: 22243844
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Leaching behavior of estuarine sediments and cement-stabilized sediments in upland management environments.
    Gardner KH; Tsiatsios CJ; Melton J; Seager TP
    Waste Manag; 2007; 27(11):1648-54. PubMed ID: 17098410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction?
    Grybos M; Davranche M; Gruau G; Petitjean P
    J Colloid Interface Sci; 2007 Oct; 314(2):490-501. PubMed ID: 17692327
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Remediation of heavy metal polluted sediment in the solid bed: comparison of abiotic and microbial leaching.
    Löser C; Zehnsdorf A; Görsch K; Seidel H
    Chemosphere; 2006 Sep; 65(1):9-16. PubMed ID: 16631887
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Release of Zn, Ni, Cu, SO4(2-) and CrO4(2-) as a function of pH from cement-based stabilized/solidified refinery oily sludge and ash from incineration of oily sludge.
    Karamalidis AK; Voudrias EA
    J Hazard Mater; 2007 Mar; 141(3):591-606. PubMed ID: 16978764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.