BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 1831338)

  • 1. Effects of increased transaldolase activity on D-xylulose and D-glucose metabolism in Saccharomyces cerevisiae cell extracts.
    Senac T; Hahn-Hägerdal B
    Appl Environ Microbiol; 1991 Jun; 57(6):1701-6. PubMed ID: 1831338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermediary Metabolite Concentrations in Xylulose- and Glucose-Fermenting Saccharomyces cerevisiae Cells.
    Senac T; Hahn-Hägerdal B
    Appl Environ Microbiol; 1990 Jan; 56(1):120-6. PubMed ID: 16348083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001.
    Johansson B; Hahn-Hägerdal B
    FEMS Yeast Res; 2002 Aug; 2(3):277-82. PubMed ID: 12702276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xylulose and glucose fermentation by Saccharomyces cerevisiae in chemostat culture.
    Jeppsson H; Yu S; Hahn-Hägerdal B
    Appl Environ Microbiol; 1996 May; 62(5):1705-9. PubMed ID: 8633869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae.
    Matsushika A; Goshima T; Fujii T; Inoue H; Sawayama S; Yano S
    Enzyme Microb Technol; 2012 Jun; 51(1):16-25. PubMed ID: 22579386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the role of GAPDH isoenzymes during pentose fermentation in engineered Saccharomyces cerevisiae.
    Linck A; Vu XK; Essl C; Hiesl C; Boles E; Oreb M
    FEMS Yeast Res; 2014 May; 14(3):389-98. PubMed ID: 24456572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xylulose fermentation by Saccharomyces cerevisiae and xylose-fermenting yeast strains.
    Yu S; Jeppsson H; Hahn-Hägerdal B
    Appl Microbiol Biotechnol; 1995 Dec; 44(3-4):314-20. PubMed ID: 8597536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of xylulokinase activity on ethanol production from D-xylulose by recombinant Saccharomyces cerevisiae.
    Lee TH; Kim MD; Park YC; Bae SM; Ryu YW; Seo JH
    J Appl Microbiol; 2003; 95(4):847-52. PubMed ID: 12969300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism.
    Richard P; Toivari MH; Penttilä M
    FEMS Microbiol Lett; 2000 Sep; 190(1):39-43. PubMed ID: 10981687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae.
    Eliasson A; Boles E; Johansson B; Osterberg M; Thevelein JM; Spencer-Martins I; Juhnke H; Hahn-Hägerdal B
    Appl Microbiol Biotechnol; 2000 Apr; 53(4):376-82. PubMed ID: 10803891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain.
    Pitkänen JP; Rintala E; Aristidou A; Ruohonen L; Penttilä M
    Appl Microbiol Biotechnol; 2005 Jun; 67(6):827-37. PubMed ID: 15630585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Genetic Requirements for Pentose Fermentation in Budding Yeast.
    Mittelman K; Barkai N
    G3 (Bethesda); 2017 Jun; 7(6):1743-1752. PubMed ID: 28404660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic pathway analysis of the xylose-metabolizing yeast protoplast fusant ZLYRHZ7.
    Ge J; Du R; Song G; Zhang Y; Ping W
    J Biosci Bioeng; 2017 Oct; 124(4):386-391. PubMed ID: 28527826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavior of transaldolase (EC 2.2.1.2) and transketolase (EC 2.2.1.1) Activities in normal, neoplastic, differentiating, and regenerating liver.
    Heinrich PC; Morris HP; Weber G
    Cancer Res; 1976 Sep; 36(9 pt.1):3189-97. PubMed ID: 10080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability.
    Toivari MH; Aristidou A; Ruohonen L; Penttilä M
    Metab Eng; 2001 Jul; 3(3):236-49. PubMed ID: 11461146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transaldolase/glucose-6-phosphate isomerase bifunctional enzyme and ribulokinase as factors to increase xylitol production from D-arabitol in Gluconobacter oxydans.
    Sugiyama M; Suzuki S; Tonouchi N; Yokozeki K
    Biosci Biotechnol Biochem; 2003 Dec; 67(12):2524-32. PubMed ID: 14730129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peroxisomal Fba2p and Tal2p complementally function in the rearrangement pathway for xylulose 5-phosphate in the methylotrophic yeast Pichia pastoris.
    Fukuoka H; Kawase T; Oku M; Yurimoto H; Sakai Y; Hayakawa T; Nakagawa T
    J Biosci Bioeng; 2019 Jul; 128(1):33-38. PubMed ID: 30711353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of oxygen and mitochondrial function in the metabolism of D-xylulose by Saccharomyces cerevisiae.
    Maleszka R; Schneider H
    Arch Biochem Biophys; 1984 Jan; 228(1):22-30. PubMed ID: 6230045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering.
    Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.