BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 18313394)

  • 1. A critical role for Romo1-derived ROS in cell proliferation.
    Na AR; Chung YM; Lee SB; Park SH; Lee MS; Yoo YD
    Biochem Biophys Res Commun; 2008 May; 369(2):672-8. PubMed ID: 18313394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serum deprivation-induced reactive oxygen species production is mediated by Romo1.
    Lee SB; Kim JJ; Kim TW; Kim BS; Lee MS; Yoo YD
    Apoptosis; 2010 Feb; 15(2):204-18. PubMed ID: 19904609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel protein, Romo1, induces ROS production in the mitochondria.
    Chung YM; Kim JS; Yoo YD
    Biochem Biophys Res Commun; 2006 Sep; 347(3):649-55. PubMed ID: 16842742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TNF-alpha-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-X(L).
    Kim JJ; Lee SB; Park JK; Yoo YD
    Cell Death Differ; 2010 Sep; 17(9):1420-34. PubMed ID: 20203691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial reactive oxygen species originating from Romo1 exert an important role in normal cell cycle progression by regulating p27(Kip1) expression.
    Chung JS; Lee SB; Park SH; Kang ST; Na AR; Chang TS; Kim HJ; Yoo YD
    Free Radic Res; 2009 Aug; 43(8):729-37. PubMed ID: 19513905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of Romo1 promotes production of reactive oxygen species and invasiveness of hepatic tumor cells.
    Chung JS; Park S; Park SH; Park ER; Cha PH; Kim BY; Chung YM; Woo SR; Han CJ; Kim SB; Suh KS; Jang JJ; Lee K; Choi DW; Lee S; Lee GY; Hahm KB; Shin JA; Kim BS; Noh KH; Kim TW; Lee KH; Yoo YD
    Gastroenterology; 2012 Oct; 143(4):1084-94.e7. PubMed ID: 22749933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug resistance to 5-FU linked to reactive oxygen species modulator 1.
    Hwang IT; Chung YM; Kim JJ; Chung JS; Kim BS; Kim HJ; Kim JS; Yoo YD
    Biochem Biophys Res Commun; 2007 Jul; 359(2):304-10. PubMed ID: 17537404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bcl-XL prevents serum deprivation-induced oxidative stress mediated by Romo1.
    Lee SB; Kim HJ; Shin J; Kang ST; Kang S; Yoo YD
    Oncol Rep; 2011 May; 25(5):1337-42. PubMed ID: 21399876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells.
    Shin JA; Chung JS; Cho SH; Kim HJ; Yoo YD
    Biochem Biophys Res Commun; 2013 Sep; 439(2):315-20. PubMed ID: 23867822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterisation of ROS modulator 1 in Lampetra japonica.
    Zhao C; Feng B; Cao Y; Xie P; Xu J; Pang Y; Liu X; Li Q
    Fish Shellfish Immunol; 2013 Aug; 35(2):278-83. PubMed ID: 23685010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Romo1 is a negative-feedback regulator of Myc.
    Lee SB; Kim JJ; Chung JS; Lee MS; Lee KH; Kim BS; Do Yoo Y
    J Cell Sci; 2011 Jun; 124(Pt 11):1911-24. PubMed ID: 21558421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor.
    Xia C; Meng Q; Liu LZ; Rojanasakul Y; Wang XR; Jiang BH
    Cancer Res; 2007 Nov; 67(22):10823-30. PubMed ID: 18006827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy.
    Ralph SJ; Rodríguez-Enríquez S; Neuzil J; Saavedra E; Moreno-Sánchez R
    Mol Aspects Med; 2010 Apr; 31(2):145-70. PubMed ID: 20206201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disturbance of DKK1 level is partly involved in survival of lung cancer cells via regulation of ROMO1 and γ-radiation sensitivity.
    Kim IG; Kim SY; Kim HA; Kim JY; Lee JH; Choi SI; Han JR; Kim KC; Cho EW
    Biochem Biophys Res Commun; 2014 Jan; 443(1):49-55. PubMed ID: 24269823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constitutive NF-κB activation and tumor-growth promotion by Romo1-mediated reactive oxygen species production.
    Chung JS; Lee S; Yoo YD
    Biochem Biophys Res Commun; 2014 Aug; 450(4):1656-61. PubMed ID: 25044121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype.
    Kumar B; Koul S; Khandrika L; Meacham RB; Koul HK
    Cancer Res; 2008 Mar; 68(6):1777-85. PubMed ID: 18339858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isoobtusilactone A-induced apoptosis in human hepatoma Hep G2 cells is mediated via increased NADPH oxidase-derived reactive oxygen species (ROS) production and the mitochondria-associated apoptotic mechanisms.
    Chen CY; Liu TZ; Chen CH; Wu CC; Cheng JT; Yiin SJ; Shih MK; Wu MJ; Chern CL
    Food Chem Toxicol; 2007 Jul; 45(7):1268-76. PubMed ID: 17321026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Panaxydol induces apoptosis through an increased intracellular calcium level, activation of JNK and p38 MAPK and NADPH oxidase-dependent generation of reactive oxygen species.
    Kim JY; Yu SJ; Oh HJ; Lee JY; Kim Y; Sohn J
    Apoptosis; 2011 Apr; 16(4):347-58. PubMed ID: 21190085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel 7-azaisoindigo derivative-induced cancer cell apoptosis and mitochondrial dysfunction mediated by oxidative stress.
    Xu JJ; Dai XM; Liu HL; Guo WJ; Gao J; Wang CH; Li WB; Yao QZ
    J Appl Toxicol; 2011 Mar; 31(2):164-72. PubMed ID: 20865757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The induction of reactive oxygen species and loss of mitochondrial Omi/HtrA2 is associated with S-nitrosoglutathione-induced apoptosis in human endothelial cells.
    Liu QB; Liu LL; Lu YM; Tao RR; Huang JY; Han F; Lou YJ
    Toxicol Appl Pharmacol; 2010 May; 244(3):374-84. PubMed ID: 20153346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.