These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 183137)

  • 41. The myosin molecule--charge response to nucleotide binding.
    Bartels EM; Cooke PH; Elliott GF; Hughes RA
    Biochim Biophys Acta; 1993 May; 1157(1):63-73. PubMed ID: 8388733
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A structural model for actin-induced nucleotide release in myosin.
    Reubold TF; Eschenburg S; Becker A; Kull FJ; Manstein DJ
    Nat Struct Biol; 2003 Oct; 10(10):826-30. PubMed ID: 14502270
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tension Recovery following Ramp-Shaped Release in High-Ca and Low-Ca Rigor Muscle Fibers: Evidence for the Dynamic State of AMADP Myosin Heads in the Absence of ATP.
    Sugi H; Yamaguchi M; Ohno T; Kobayashi T; Chaen S; Okuyama H
    PLoS One; 2016; 11(9):e0162003. PubMed ID: 27583360
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The nucleotide complexes of myosin in glycerol-extracted muscle fibres.
    Marston S
    Biochim Biophys Acta; 1973 May; 305(2):397-412. PubMed ID: 4270181
    [No Abstract]   [Full Text] [Related]  

  • 45. Atomic structure of the actin:DNase I complex.
    Kabsch W; Mannherz HG; Suck D; Pai EF; Holmes KC
    Nature; 1990 Sep; 347(6288):37-44. PubMed ID: 2395459
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sails set for the myosin active site.
    Chantler P
    Nature; 1980 Feb; 283(5748):621. PubMed ID: 6444454
    [No Abstract]   [Full Text] [Related]  

  • 47. Structural transients of contractile proteins upon sudden ATP liberation in skeletal muscle fibers.
    Wakayama J; Tamura T; Yagi N; Iwamoto H
    Biophys J; 2004 Jul; 87(1):430-41. PubMed ID: 15240477
    [TBL] [Abstract][Full Text] [Related]  

  • 48. KC1 jump induced formation of adenosine triphosphate from the reactive myosin-phosphate-ADP complex.
    Inoue A; Arata T; Tonomura Y
    J Biochem; 1974 Sep; 76(3):661-6. PubMed ID: 4436280
    [No Abstract]   [Full Text] [Related]  

  • 49. Transormation of chemical into mechanical energy by glycerol-extracted fibres of insect flight muscles in the absence of nucleosidetriphosphate-hydrolysis.
    Kuhn HJ
    Experientia; 1973 Sep; 29(9):1086-8. PubMed ID: 4744852
    [No Abstract]   [Full Text] [Related]  

  • 50. [Muscle contraction cycles and changes in configuraion of the cross bridges using pyrophosphate instead of ATP?].
    Kuhn HJ; Beinbrech G; Rüegg JC
    Pflugers Arch; 1972; 332():Suppl 332:R71. PubMed ID: 4340623
    [No Abstract]   [Full Text] [Related]  

  • 51. Intermediate complex of ATP hydrolysis and synthesis by muscle proteins.
    Hotta K
    J Supramol Struct; 1975; 3(4):333-7. PubMed ID: 172738
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular control mechanisms in muscle contraction.
    Weber A; Murray JM
    Physiol Rev; 1973 Jul; 53(3):612-73. PubMed ID: 4577547
    [No Abstract]   [Full Text] [Related]  

  • 53. The inhibition of muscle contraction by adenosine 5' (beta, gamma-imido) triphosphate and by pyrophosphate.
    Pate E; Cooke R
    Biophys J; 1985 Jun; 47(6):773-80. PubMed ID: 2990586
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Monitoring the myosin ATPase reaction using a sensitive fluorescent probe: pyrene-labeled ATP.
    Hiratsuka T
    Biophys J; 1997 Feb; 72(2 Pt 1):843-9. PubMed ID: 9017209
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural changes in myosin during contraction and the state of ATP in the intact frog muscle.
    Bárány M; Bárány K; Burt CT; Glonek T; Myers TC
    J Supramol Struct; 1975; 3(2):125-40. PubMed ID: 127883
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protein fluorescence changes associated with ATP and adenosine 5'-[gamma-thio]triphosphate binding to skeletal muscle myosin subfragment 1 and actomyosin subfragment 1.
    Millar NC; Geeves MA
    Biochem J; 1988 Feb; 249(3):735-43. PubMed ID: 3355494
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Analysis of conformational changes at the unique loop adjacent to the ATP binding site of smooth muscle myosin using a fluorescent probe.
    Maruta S; Saitoh J; Asakura T
    J Biochem; 2000 Feb; 127(2):199-204. PubMed ID: 10731685
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The structural basis of muscle contraction.
    Holmes KC; Geeves MA
    Philos Trans R Soc Lond B Biol Sci; 2000 Apr; 355(1396):419-31. PubMed ID: 10836495
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nucleotide regulatory sites on skeletal myosin.
    Laborda-Santesteban MS; López-Unzu MJ; López-Zabalza MJ; López-Moratalla N; Santiago E
    Rev Esp Fisiol; 1989 Mar; 45(1):71-7. PubMed ID: 2526354
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Binding of adenosine triphosphate to myofibrils during contraction and relaxation.
    Maruyama K; Weber A
    Biochemistry; 1972 Aug; 11(16):2990-8. PubMed ID: 4261261
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.