These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 18313728)
21. Lab-scale study on the application of In-Adit-Sulfate-Reducing System for AMD control. Ji SW; Kim SJ J Hazard Mater; 2008 Dec; 160(2-3):441-7. PubMed ID: 18455296 [TBL] [Abstract][Full Text] [Related]
22. The effect of inoculum on the performance of sulfate-reducing columns treating heavy metal contaminated water. Pruden A; Messner N; Pereyra L; Hanson RE; Hiibel SR; Reardon KF Water Res; 2007 Feb; 41(4):904-14. PubMed ID: 17222885 [TBL] [Abstract][Full Text] [Related]
23. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs. Neculita CM; Zagury GJ; Bussière B J Environ Qual; 2007; 36(1):1-16. PubMed ID: 17215207 [TBL] [Abstract][Full Text] [Related]
24. Bioassessment of a combined chemical-biological treatment for synthetic acid mine drainage. Pagnanelli F; De Michelis I; Di Muzio S; Ferella F; Vegliò F J Hazard Mater; 2008 Nov; 159(2-3):567-73. PubMed ID: 18394799 [TBL] [Abstract][Full Text] [Related]
25. Heavy metals in a constructed wetland treating industrial wastewater: distribution in the sediment and rhizome tissue. Domingos S; Dallas S; Germain M; Ho G Water Sci Technol; 2009; 60(6):1425-32. PubMed ID: 19759445 [TBL] [Abstract][Full Text] [Related]
26. Wetland treatment at extremes of pH: a review. Mayes WM; Batty LC; Younger PL; Jarvis AP; Kõiv M; Vohla C; Mander U Sci Total Environ; 2009 Jun; 407(13):3944-57. PubMed ID: 18706678 [TBL] [Abstract][Full Text] [Related]
27. Treatment of mine drainage using permeable reactive barrers: column experiments. Waybrant KR; Ptacek CJ; Blowes DW Environ Sci Technol; 2002 Mar; 36(6):1349-56. PubMed ID: 11944692 [TBL] [Abstract][Full Text] [Related]
28. Microbial community activities during establishment, performance, and decline of bench-scale passive treatment systems for mine drainage. Logan MV; Reardon KF; Figueroa LA; McLain JE; Ahmann DM Water Res; 2005 Nov; 39(18):4537-51. PubMed ID: 16213004 [TBL] [Abstract][Full Text] [Related]
29. Investigation and optimization of a passively operated compost-based system for remediation of acidic, highly iron- and sulfate-rich industrial waste water. Dann AL; Cooper RS; Bowman JP Water Res; 2009 May; 43(8):2302-16. PubMed ID: 19297003 [TBL] [Abstract][Full Text] [Related]
30. Removal of heavy metals using a novel sulfidogenic AMD treatment system with sulfur reduction: Configuration, performance, critical parameters and economic analysis. Sun R; Li Y; Lin N; Ou C; Wang X; Zhang L; Jiang F Environ Int; 2020 Mar; 136():105457. PubMed ID: 31926438 [TBL] [Abstract][Full Text] [Related]
32. Microbiological monitoring of acid mine drainage treatment systems and aquatic surroundings using real-time PCR. Han JS; Kim CG Water Sci Technol; 2009; 59(11):2083-91. PubMed ID: 19494446 [TBL] [Abstract][Full Text] [Related]
33. Identification of sulfate-reducing bacteria in methylmercury-contaminated mine tailings by analysis of SSU rRNA genes. Winch S; Mills HJ; Kostka JE; Fortin D; Lean DR FEMS Microbiol Ecol; 2009 Apr; 68(1):94-107. PubMed ID: 19291023 [TBL] [Abstract][Full Text] [Related]
34. Characterization, morphology and composition of biofilm and precipitates from a sulphate-reducing fixed-bed reactor. Remoundaki E; Kousi P; Joulian C; Battaglia-Brunet F; Hatzikioseyian A; Tsezos M J Hazard Mater; 2008 May; 153(1-2):514-24. PubMed ID: 17931772 [TBL] [Abstract][Full Text] [Related]
35. Biogeochemistry of two types of permeable reactive barriers, organic carbon and iron-bearing organic carbon for mine drainage treatment: column experiments. Guo Q; Blowes DW J Contam Hydrol; 2009 Jul; 107(3-4):128-39. PubMed ID: 19467564 [TBL] [Abstract][Full Text] [Related]
36. [Effect of Zn(II) on microbial activity in anaerobic acid mine drainage treatment system with biomass as carbon source]. Li SJ; Chen TH; Zhou YF; Yue ZB; Jin J; Liu C Huan Jing Ke Xue; 2012 Jan; 33(1):293-8. PubMed ID: 22452225 [TBL] [Abstract][Full Text] [Related]
37. Biotreatment of zinc-containing wastewater in a sulfidogenic CSTR: Performance and artificial neural network (ANN) modelling studies. Sahinkaya E J Hazard Mater; 2009 May; 164(1):105-13. PubMed ID: 18774640 [TBL] [Abstract][Full Text] [Related]
38. Effect of reactive media composition and co-contaminants on sulfur-based autotrophic denitrification. Moon HS; Chang SW; Nam K; Choe J; Kim JY Environ Pollut; 2006 Dec; 144(3):802-7. PubMed ID: 16632130 [TBL] [Abstract][Full Text] [Related]
39. Complete removal of arsenic and zinc from a heavily contaminated acid mine drainage via an indigenous SRB consortium. Le Pape P; Battaglia-Brunet F; Parmentier M; Joulian C; Gassaud C; Fernandez-Rojo L; Guigner JM; Ikogou M; Stetten L; Olivi L; Casiot C; Morin G J Hazard Mater; 2017 Jan; 321():764-772. PubMed ID: 27720469 [TBL] [Abstract][Full Text] [Related]
40. Gas phase H(2)S product recovery in a packed bed bioreactor with immobilized sulfate-reducing bacteria. McMahon MJ; Daugulis AJ Biotechnol Lett; 2008 Mar; 30(3):467-73. PubMed ID: 17972017 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]