BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 18314595)

  • 21. Hyaluronan influence on the onset of chondrogenic differentiation of mesenchymal stem cells.
    Dvorakova J; Velebny V; Kubala L
    Neuro Endocrinol Lett; 2008 Oct; 29(5):685-90. PubMed ID: 18987597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The pathology of head and neck tumors: neoplasms of cartilage, bone, and the notochord, part 7.
    Batsakis JG; Solomon AR; Rice DH
    Head Neck Surg; 1980; 3(1):43-57. PubMed ID: 6250996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The complexities of skeletal biology.
    Karsenty G
    Nature; 2003 May; 423(6937):316-8. PubMed ID: 12748648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chondrocytes harvested from osteochondritis dissecans cartilage are able to undergo limited in vitro chondrogenesis despite having perturbations of cell phenotype in vivo.
    Garvican ER; Vaughan-Thomas A; Redmond C; Clegg PD
    J Orthop Res; 2008 Aug; 26(8):1133-40. PubMed ID: 18327793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chondrocytic cell differentiation in clear cell chondrosarcoma.
    Aigner T; Dertinger S; Belke J; Kirchner T
    Hum Pathol; 1996 Dec; 27(12):1301-5. PubMed ID: 8958302
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome duplication and the origin of the vertebrate skeleton.
    Zhang G; Cohn MJ
    Curr Opin Genet Dev; 2008 Aug; 18(4):387-93. PubMed ID: 18721879
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glucocorticoid-dependent Wnt signaling by mature osteoblasts is a key regulator of cranial skeletal development in mice.
    Zhou H; Mak W; Kalak R; Street J; Fong-Yee C; Zheng Y; Dunstan CR; Seibel MJ
    Development; 2009 Feb; 136(3):427-36. PubMed ID: 19141672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The developmental basis of skeletal cell differentiation and the molecular basis of major skeletal defects.
    Blair HC; Zaidi M; Huang CL; Sun L
    Biol Rev Camb Philos Soc; 2008 Nov; 83(4):401-15. PubMed ID: 18710437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emerging pathways in the development of chondrosarcoma of bone and implications for targeted treatment.
    Bovée JV; Cleton-Jansen AM; Taminiau AH; Hogendoorn PC
    Lancet Oncol; 2005 Aug; 6(8):599-607. PubMed ID: 16054571
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecules, mechanisms, and momentum in bone and cartilage research.
    Zaidi M; Iqbal J; Sun L; Blair HC
    Biochem Biophys Res Commun; 2005 Mar; 328(3):647-50. PubMed ID: 15694397
    [No Abstract]   [Full Text] [Related]  

  • 31. Analysis of skeletal ontogenesis through differential staining of bone and cartilage.
    Depew MJ
    Methods Mol Biol; 2008; 461():37-45. PubMed ID: 19030790
    [No Abstract]   [Full Text] [Related]  

  • 32. Platelet lysate favours in vitro expansion of human bone marrow stromal cells for bone and cartilage engineering.
    Zaky SH; Ottonello A; Strada P; Cancedda R; Mastrogiacomo M
    J Tissue Eng Regen Med; 2008 Dec; 2(8):472-81. PubMed ID: 18932128
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bone morphogenetic protein-2 stimulates chondrogenic expression in human nasal chondrocytes expanded in vitro.
    Hautier A; Salentey V; Aubert-Foucher E; Bougault C; Beauchef G; Ronzière MC; De Sobarnitsky S; Paumier A; Galéra P; Piperno M; Damour O; Mallein-Gerin F
    Growth Factors; 2008 Aug; 26(4):201-11. PubMed ID: 18720162
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biology of developmental and regenerative skeletogenesis.
    Tuan RS
    Clin Orthop Relat Res; 2004 Oct; (427 Suppl):S105-17. PubMed ID: 15480052
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of donor and hypoxic conditions on the assembly of cartilage matrix by osteoarthritic human articular chondrocytes on Hyalograft matrices.
    Katopodi T; Tew SR; Clegg PD; Hardingham TE
    Biomaterials; 2009 Feb; 30(4):535-40. PubMed ID: 18990440
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of CXC chemokines and their receptors is modulated during chondrogenic differentiation of human mesenchymal stem cells grown in three-dimensional scaffold: evidence in native cartilage.
    Cristino S; Piacentini A; Manferdini C; Codeluppi K; Grassi F; Facchini A; Lisignoli G
    Tissue Eng Part A; 2008 Jan; 14(1):97-105. PubMed ID: 18333808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of the perichondrium in fetal bone development.
    Kronenberg HM
    Ann N Y Acad Sci; 2007 Nov; 1116():59-64. PubMed ID: 18083921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of interobserver variability and histologic parameters to improve reliability in classification and grading of central cartilaginous tumors.
    Eefting D; Schrage YM; Geirnaerdt MJ; Le Cessie S; Taminiau AH; Bovée JV; Hogendoorn PC;
    Am J Surg Pathol; 2009 Jan; 33(1):50-7. PubMed ID: 18852676
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellular methods in cartilage research: primary human chondrocytes in culture and chondrogenesis in human bone marrow stem cells.
    Tew SR; Murdoch AD; Rauchenberg RP; Hardingham TE
    Methods; 2008 May; 45(1):2-9. PubMed ID: 18442700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphology and phenotype expression of types I, II, III, and X collagen and MMP-13 of chondrocytes cultured from articular cartilage of Kashin-Beck Disease.
    Wang W; Guo X; Chen J; Xu P; Lammi MJ
    J Rheumatol; 2008 Apr; 35(4):696-702. PubMed ID: 18322983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.