These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 1831462)

  • 1. Kinetics of ATP release and Pi binding during the ATPase cycle of lethocerus flight muscle fibres, using phosphate-water oxygen exchange.
    Webb MR; Lund J; Hunter JL; White DC
    J Muscle Res Cell Motil; 1991 Jun; 12(3):254-61. PubMed ID: 1831462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-bridge kinetics in asynchronous insect flight muscle.
    White DC; Lund J; Webb MR
    Adv Exp Med Biol; 1988; 226():169-79. PubMed ID: 2970205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in the ATPase activity of insect fibrillar flight muscle during sinusoidal length oscillation probed by phosphate-water oxygen exchange.
    Lund J; Webb MR; White DC
    J Biol Chem; 1988 Apr; 263(12):5505-11. PubMed ID: 2965703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in the ATPase activity of insect fibrillar flight muscle during calcium and strain activation probed by phosphate-water oxygen exchange.
    Lund J; Webb MR; White DC
    J Biol Chem; 1987 Jun; 262(18):8584-90. PubMed ID: 2954954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen exchange between Pi in the medium and water during ATP hydrolysis mediated by skinned fibers from rabbit skeletal muscle. Evidence for Pi binding to a force-generating state.
    Webb MR; Hibberd MG; Goldman YE; Trentham DR
    J Biol Chem; 1986 Nov; 261(33):15557-64. PubMed ID: 2946675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of the reversibility of ATP binding to myosin in calcium-activated skinned fibers from rabbit skeletal muscle. Oxygen exchange between water and ATP released to the solution.
    Bowater R; Webb MR; Ferenczi MA
    J Biol Chem; 1989 May; 264(13):7193-201. PubMed ID: 2523391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of ATP and inorganic phosphate release during hydrolysis of ATP by rabbit skeletal actomyosin subfragment 1. Oxygen exchange between water and ATP or phosphate.
    Bowater R; Zimmerman RW; Webb MR
    J Biol Chem; 1990 Jan; 265(1):171-6. PubMed ID: 2136736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the ATPase mechanism of myosin subfragment 1 from insect fibrillar flight muscle in the presence and absence of actin, using phosphate-water oxygen exchange measurements.
    White DC; Ricigliano JW; Webb MR
    J Muscle Res Cell Motil; 1987 Dec; 8(6):537-40. PubMed ID: 2965161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The elementary steps of the actomyosin ATPase in muscle fibres studied with caged-ATP.
    Ferenczi MA; Spencer CI
    Adv Exp Med Biol; 1988; 226():181-8. PubMed ID: 2970206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of ATP hydrolysis catalyzed by myosin and actomyosin, using rapid reaction techniques to study oxygen exchange.
    Webb MR; Trentham DR
    J Biol Chem; 1981 Nov; 256(21):10910-6. PubMed ID: 7287741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of MgATP on forming and breaking actin-myosin linkages in contracted skinned insect flight muscle fibres.
    Kuhn HJ; Bletz C; Güth K; Rüegg JC
    J Muscle Res Cell Motil; 1985 Feb; 6(1):5-27. PubMed ID: 3159751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATPase kinetics on activation of rabbit and frog permeabilized isometric muscle fibres: a real time phosphate assay.
    He ZH; Chillingworth RK; Brune M; Corrie JE; Trentham DR; Webb MR; Ferenczi MA
    J Physiol; 1997 May; 501 ( Pt 1)(Pt 1):125-48. PubMed ID: 9174999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the mechanism of actomyosin ATPase from fast muscle.
    Midelfort CF
    Proc Natl Acad Sci U S A; 1981 Apr; 78(4):2067-71. PubMed ID: 6454140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP formation and ATP hydrolysis during fatiguing, intermittent stimulation of different types of single muscle fibres from Xenopus laevis.
    Nagesser AS; Van der Laarse WJ; Elzinga G
    J Muscle Res Cell Motil; 1993 Dec; 14(6):608-18. PubMed ID: 8126221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen exchange reaction during ATP hydrolysis by glycerinated muscle fibers, myofibrils, and synthetic actomyosin filaments.
    Yasui M; Ohe M; Kajita A; Arata T; Inoue A
    J Biochem; 1989 Apr; 105(4):644-7. PubMed ID: 2527230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependence of adenosine triphosphatase activity of rabbit psoas muscle fibres and myofibrils on substrate concentration.
    Glyn H; Sleep J
    J Physiol; 1985 Aug; 365():259-76. PubMed ID: 3162018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ADP release is rate limiting in steady-state turnover by the dynein adenosinetriphosphatase.
    Holzbaur EL; Johnson KA
    Biochemistry; 1989 Jun; 28(13):5577-85. PubMed ID: 2528374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of actomyosin adenosine triphosphatase. Evidence that adenosine 5'-triphosphate hydrolysis can occur without dissociation of the actomyosin complex.
    Stein LA; Schwarz RP; Chock PB; Eisenberg E
    Biochemistry; 1979 Sep; 18(18):3895-909. PubMed ID: 158378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for energy-dependent change in phosphate binding for mitochondrial oxidative phosphorylation based on measurements of medium and intermediate phosphate-water exchanges.
    Rosing J; Kayalar C; Boyer PD
    J Biol Chem; 1977 Apr; 252(8):2478-85. PubMed ID: 140165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic X-ray diffraction measurements following photolytic relaxation and activation of skinned rabbit psoas fibres.
    Poole KJ; Maeda Y; Rapp G; Goody RS
    Adv Biophys; 1991; 27():63-75. PubMed ID: 1836710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.