These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 18314890)

  • 1. Particle diffusional layer thickness in a USP dissolution apparatus II: a combined function of particle size and paddle speed.
    Sheng JJ; Sirois PJ; Dressman JB; Amidon GL
    J Pharm Sci; 2008 Nov; 97(11):4815-29. PubMed ID: 18314890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental determination of the diffusion boundary layer width of micron and submicron particles.
    Galli C
    Int J Pharm; 2006 Apr; 313(1-2):114-22. PubMed ID: 16529883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimum rotation speed to prevent coning phenomena in compendium paddle dissolution apparatus.
    Higuchi M; Yoshihashi Y; Tarada K; Sugano K
    Eur J Pharm Sci; 2014 Dec; 65():74-8. PubMed ID: 25240320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro dissolution models for the prediction of in vivo performance of an oral mesoporous silica formulation.
    McCarthy CA; Faisal W; O'Shea JP; Murphy C; Ahern RJ; Ryan KB; Griffin BT; Crean AM
    J Control Release; 2017 Mar; 250():86-95. PubMed ID: 28132935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the enhanced oral bioavailability of fenofibrate lipid formulations in fasted humans using an in vitro-in silico-in vivo approach.
    Fei Y; Kostewicz ES; Sheu MT; Dressman JB
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1274-84. PubMed ID: 23500116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring bulk volume, particle size and particle motion definitions to increase the predictive ability of in vitro dissolution simulations.
    Navas-Bachiller M; Persoons T; D'Arcy DM
    Eur J Pharm Sci; 2022 Jul; 174():106185. PubMed ID: 35398291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Computational Fluid Dynamics to Compare Shear Rate and Turbulence in the TIM-Automated Gastric Compartment With USP Apparatus II.
    Hopgood M; Reynolds G; Barker R
    J Pharm Sci; 2018 Jul; 107(7):1911-1919. PubMed ID: 29608886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissolution of USP prednisone calibrator tablets: effects of stirring conditions and particle size distribution.
    Röst M; Quist PO
    J Pharm Biomed Anal; 2003 Apr; 31(6):1129-43. PubMed ID: 12667929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the Potential for Dissolution Simulation to Explore the Effects of Medium Viscosity on Particulate Dissolution.
    D'Arcy DM; Persoons T
    AAPS PharmSciTech; 2019 Jan; 20(2):47. PubMed ID: 30617668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational fluid dynamics modeling of the paddle dissolution apparatus: agitation rate, mixing patterns, and fluid velocities.
    McCarthy LG; Bradley G; Sexton JC; Corrigan OI; Healy AM
    AAPS PharmSciTech; 2004 Apr; 5(2):e31. PubMed ID: 15760089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating the hydrodynamic conditions in the United States Pharmacopeia paddle dissolution apparatus.
    McCarthy LG; Kosiol C; Healy AM; Bradley G; Sexton JC; Corrigan OI
    AAPS PharmSciTech; 2003; 4(2):E22. PubMed ID: 12916904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the effect of solubility and density gradients on local hydrodynamics and drug dissolution in the USP 4 dissolution apparatus.
    D'Arcy DM; Liu B; Corrigan OI
    Int J Pharm; 2011 Oct; 419(1-2):175-85. PubMed ID: 21843609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General solution for diffusion-controlled dissolution of spherical particles. 1. Theory.
    Wang J; Flanagan DR
    J Pharm Sci; 1999 Jul; 88(7):731-8. PubMed ID: 10393573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biorelevant in vitro dissolution testing of products containing micronized or nanosized fenofibrate with a view to predicting plasma profiles.
    Juenemann D; Jantratid E; Wagner C; Reppas C; Vertzoni M; Dressman JB
    Eur J Pharm Biopharm; 2011 Feb; 77(2):257-64. PubMed ID: 21074611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim.
    Sjögren E; Westergren J; Grant I; Hanisch G; Lindfors L; Lennernäs H; Abrahamsson B; Tannergren C
    Eur J Pharm Sci; 2013 Jul; 49(4):679-98. PubMed ID: 23727464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Velocity Field Visualization in USP Dissolution Apparatus 3 Using Particle Image Velocimetry.
    Perivilli S; Prevost R; Stippler E
    Pharm Res; 2017 Jun; 34(6):1330-1337. PubMed ID: 28409325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of the dissolution of indomethacin in interactive mixtures using added fine lactose.
    Allahham A; Stewart PJ
    Eur J Pharm Biopharm; 2007 Nov; 67(3):732-42. PubMed ID: 17540551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and computational determination of the hydrodynamics of mini vessel dissolution testing systems.
    Wang B; Armenante PM
    Int J Pharm; 2016 Aug; 510(1):336-49. PubMed ID: 27317988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of fluid velocity and particle size on the hydrodynamic diffusion layer thickness.
    Andersson SBE; Frenning G; Alderborn G; Gråsjö J
    Eur J Pharm Biopharm; 2022 Nov; 180():1-10. PubMed ID: 36152951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical comparison of hydrodynamic diffusion layer models used for dissolution simulation in drug discovery and development.
    Sugano K
    Int J Pharm; 2008 Nov; 363(1-2):73-7. PubMed ID: 18675893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.