These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 18314890)

  • 41. Predictive Drug Release Modeling Across Dissolution Apparatuses I and II using Computational Fluid Dynamics.
    Kubinski AM; Shivkumar G; Georgi RA; George S; Reynolds J; Sosa RD; Ju TR
    J Pharm Sci; 2023 Mar; 112(3):808-819. PubMed ID: 36336104
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of basket mesh size on the hydrodynamics in the USP rotating basket dissolution testing Apparatus 1.
    Sirasitthichoke C; Patel S; Reuter KG; Hermans A; Bredael G; Armenante PM
    Int J Pharm; 2021 Sep; 607():120976. PubMed ID: 34363918
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Properties of rapidly dissolving eutectic mixtures of poly(ethylene glycol) and fenofibrate: the eutectic microstructure.
    Law D; Wang W; Schmitt EA; Qiu Y; Krill SL; Fort JJ
    J Pharm Sci; 2003 Mar; 92(3):505-15. PubMed ID: 12587112
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydrodynamic investigation of USP dissolution test apparatus II.
    Bai G; Armenante PM; Plank RV; Gentzler M; Ford K; Harmon P
    J Pharm Sci; 2007 Sep; 96(9):2327-49. PubMed ID: 17573698
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Understanding agglomeration of indomethacin during the dissolution of micronised indomethacin mixtures through dissolution and de-agglomeration modeling approaches.
    Stewart PJ; Zhao FY
    Eur J Pharm Biopharm; 2005 Feb; 59(2):315-23. PubMed ID: 15661504
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vitro and in vivo evaluation of a self-microemulsifying drug delivery system for the poorly soluble drug fenofibrate.
    Cho YD; Park YJ
    Arch Pharm Res; 2014 Feb; 37(2):193-203. PubMed ID: 23754165
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of the Hydrodynamics in the USP Basket Apparatus Using Computational Fluid Dynamics.
    Martinez AF; Sinha K; Nere N; Slade R; Castleberry S
    J Pharm Sci; 2020 Mar; 109(3):1231-1241. PubMed ID: 31743682
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preparation of ultrafine fenofibrate powder by solidification process from emulsion.
    Huang QP; Wang JX; Zhang ZB; Shen ZG; Chen JF; Yun J
    Int J Pharm; 2009 Feb; 368(1-2):160-4. PubMed ID: 19010406
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vitro quantitative ((1))H and ((19))F nuclear magnetic resonance spectroscopy and imaging studies of fluvastatin™ in Lescol® XL tablets in a USP-IV dissolution cell.
    Zhang Q; Gladden L; Avalle P; Mantle M
    J Control Release; 2011 Dec; 156(3):345-54. PubMed ID: 21911016
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Determination of mass transfer dissolution rate constants from critical time of dissolution of a powder sample.
    Carstensen JT; Dali M
    Pharm Dev Technol; 1999 Jan; 4(1):1-8. PubMed ID: 10027207
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of a laser diffraction method for the determination of the particle size of aerosolised powder formulations.
    Marriott C; MacRitchie HB; Zeng XM; Martin GP
    Int J Pharm; 2006 Dec; 326(1-2):39-49. PubMed ID: 16942848
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dissolution rate studies from a stationary disk/rotating fluid system.
    Khoury N; Mauger JW; Howard S
    Pharm Res; 1988 Aug; 5(8):495-500. PubMed ID: 3244657
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The use of microviscometry to study polymer dissolution from solid dispersion drug delivery systems.
    Esnaashari S; Javadzadeh Y; Batchelor HK; Conway BR
    Int J Pharm; 2005 Mar; 292(1-2):227-30. PubMed ID: 15725569
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Purified guar galactomannan as an improved pharmaceutical excipient.
    Gebert MS; Friend DR
    Pharm Dev Technol; 1998 Aug; 3(3):315-23. PubMed ID: 9742552
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Vibration effects of lab equipment on dissolution testing with USP paddle method.
    Gao Z; Thies A; Doub W
    J Pharm Sci; 2010 Jan; 99(1):403-12. PubMed ID: 19544371
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydrodynamic and species transfer simulations in the USP 4 dissolution apparatus: considerations for dissolution in a low velocity pulsing flow.
    D'Arcy DM; Liu B; Bradley G; Healy AM; Corrigan OI
    Pharm Res; 2010 Feb; 27(2):246-58. PubMed ID: 20012167
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Release characterization of dimenhydrinate from an eroding and swelling matrix: selection of appropriate dissolution apparatus.
    Missaghi S; Fassihi R
    Int J Pharm; 2005 Apr; 293(1-2):35-42. PubMed ID: 15778042
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of a discriminating in vitro dissolution method for a poorly soluble NO-donating selective cyclooxygenase-2 inhibitor.
    Papp R; Luk P; Mullett WM; Kwong E; Debnath S; Thibert R
    J Pharm Biomed Anal; 2008 May; 47(1):16-22. PubMed ID: 18272312
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pharmaceutical and pharmacokinetic characteristics of different types of fenofibrate nanocrystals prepared by different bottom-up approaches.
    Zhang H; Meng Y; Wang X; Dai W; Wang X; Zhang Q
    Drug Deliv; 2014 Dec; 21(8):588-94. PubMed ID: 24320001
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Experimental and computational determination of blend time in USP Dissolution Testing Apparatus II.
    Bai G; Armenante PM; Plank RV
    J Pharm Sci; 2007 Nov; 96(11):3072-86. PubMed ID: 17828739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.