BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 18314898)

  • 1. Multilayer composite scaffolds with mechanical properties similar to small intestinal submucosa.
    Lawrence BJ; Maase EL; Lin HK; Madihally SV
    J Biomed Mater Res A; 2009 Mar; 88(3):634-43. PubMed ID: 18314898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of emulsified chitosan-PLGA matrices formed using controlled-rate freezing and lyophilization technique.
    Moshfeghian A; Tillman J; Madihally SV
    J Biomed Mater Res A; 2006 Nov; 79(2):418-30. PubMed ID: 16906526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homogeneous chitosan-PLGA composite fibrous scaffolds for tissue regeneration.
    Shim IK; Lee SY; Park YJ; Lee MC; Lee SH; Lee JY; Lee SJ
    J Biomed Mater Res A; 2008 Jan; 84(1):247-55. PubMed ID: 17607738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro characterization of chitosan-gelatin scaffolds for tissue engineering.
    Huang Y; Onyeri S; Siewe M; Moshfeghian A; Madihally SV
    Biomaterials; 2005 Dec; 26(36):7616-27. PubMed ID: 16005510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composite fibrous membranes of PLGA and chitosan prepared by coelectrospinning and coaxial electrospinning.
    Wu L; Li H; Li S; Li X; Yuan X; Li X; Zhang Y
    J Biomed Mater Res A; 2010 Feb; 92(2):563-74. PubMed ID: 19235217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PLGA/chitosan composites from a combination of spray drying and supercritical fluid foaming techniques: new carriers for DNA delivery.
    Nie H; Lee LY; Tong H; Wang CH
    J Control Release; 2008 Aug; 129(3):207-14. PubMed ID: 18539352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA.
    Nie H; Wang CH
    J Control Release; 2007 Jul; 120(1-2):111-21. PubMed ID: 17512077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro.
    Liao S; Watari F; Zhu Y; Uo M; Akasaka T; Wang W; Xu G; Cui F
    Dent Mater; 2007 Sep; 23(9):1120-8. PubMed ID: 17095082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional cell colonization in a sulfate rich environment.
    Tillman J; Ullm A; Madihally SV
    Biomaterials; 2006 Nov; 27(32):5618-26. PubMed ID: 16884767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds.
    Huang YX; Ren J; Chen C; Ren TB; Zhou XY
    J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical characteristics of small intestinal submucosa scaffolds are location-dependent.
    Raghavan D; Kropp BP; Lin HK; Zhang Y; Cowan R; Madihally SV
    J Biomed Mater Res A; 2005 Apr; 73(1):90-6. PubMed ID: 15693016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration.
    Liao S; Wang W; Uo M; Ohkawa S; Akasaka T; Tamura K; Cui F; Watari F
    Biomaterials; 2005 Dec; 26(36):7564-71. PubMed ID: 16005963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and properties of an injectable scaffold of poly(lactic-co-glycolic acid) microparticles/chitosan hydrogel.
    Hu X; Zhou J; Zhang N; Tan H; Gao C
    J Mech Behav Biomed Mater; 2008 Oct; 1(4):352-9. PubMed ID: 19627800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue engineered esophagus scaffold constructed with porcine small intestinal submucosa and synthetic polymers.
    Fan MR; Gong M; Da LC; Bai L; Li XQ; Chen KF; Li-Ling J; Yang ZM; Xie HQ
    Biomed Mater; 2014 Feb; 9(1):015012. PubMed ID: 24457267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production and characterization of chitosan fibers and 3-D fiber mesh scaffolds for tissue engineering applications.
    Tuzlakoglu K; Alves CM; Mano JF; Reis RL
    Macromol Biosci; 2004 Aug; 4(8):811-9. PubMed ID: 15468275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An in vivo study of the host tissue response to subcutaneous implantation of PLGA- and/or porcine small intestinal submucosa-based scaffolds.
    Kim MS; Ahn HH; Shin YN; Cho MH; Khang G; Lee HB
    Biomaterials; 2007 Dec; 28(34):5137-43. PubMed ID: 17764737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of poly(lactide-co-glycolide) scaffold-impregnated small intestinal submucosa with pores that stimulate extracellular matrix production in disc regeneration.
    Kim SH; Song JE; Lee D; Khang G
    J Tissue Eng Regen Med; 2014 Apr; 8(4):279-90. PubMed ID: 22689349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K; Ju YM; Son JS; Ahn KD; Han DK
    J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering.
    Tan H; Wu J; Lao L; Gao C
    Acta Biomater; 2009 Jan; 5(1):328-37. PubMed ID: 18723417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid nanofibrous membranes of PLGA/chitosan fabricated via an electrospinning array.
    Duan B; Wu L; Yuan X; Hu Z; Li X; Zhang Y; Yao K; Wang M
    J Biomed Mater Res A; 2007 Dec; 83(3):868-78. PubMed ID: 17567858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.