These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 18314983)

  • 1. A microfluidic fuel cell with flow-through porous electrodes.
    Kjeang E; Michel R; Harrington DA; Djilali N; Sinton D
    J Am Chem Soc; 2008 Mar; 130(12):4000-6. PubMed ID: 18314983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lab-on-chip methodologies for the study of transport in porous media: energy applications.
    Berejnov V; Djilali N; Sinton D
    Lab Chip; 2008 May; 8(5):689-93. PubMed ID: 18432337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A passive microfluidic hydrogen-air fuel cell with exceptional stability and high performance.
    Mitrovski SM; Nuzzo RG
    Lab Chip; 2006 Mar; 6(3):353-61. PubMed ID: 16511617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of microfluidic fuel cells using transport principles.
    Lee J; Lim KG; Palmore GT; Tripathi A
    Anal Chem; 2007 Oct; 79(19):7301-7. PubMed ID: 17727270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Air-breathing laminar flow-based microfluidic fuel cell.
    Jayashree RS; Gancs L; Choban ER; Primak A; Natarajan D; Markoski LJ; Kenis PJ
    J Am Chem Soc; 2005 Dec; 127(48):16758-9. PubMed ID: 16316201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic device for the detection of glucose using a micro direct methanol fuel cell as an amperometric detection power source.
    Ito T; Kunimatsu M; Kaneko S; Ohya S; Suzuki K
    Anal Chem; 2007 Feb; 79(4):1725-30. PubMed ID: 17297980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membraneless, room-temperature, direct borohydride/cerium fuel cell with power density of over 0.25 W/cm2.
    Da Mota N; Finkelstein DA; Kirtland JD; Rodriguez CA; Stroock AD; Abruña HD
    J Am Chem Soc; 2012 Apr; 134(14):6076-9. PubMed ID: 22455318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fuel cell-powered microfluidic platform for lab-on-a-chip applications.
    Esquivel JP; Castellarnau M; Senn T; Löchel B; Samitier J; Sabaté N
    Lab Chip; 2012 Jan; 12(1):74-9. PubMed ID: 22072241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic direct formate fuel cell on paper.
    Copenhaver TS; Purohit KH; Domalaon K; Pham L; Burgess BJ; Manorothkul N; Galvan V; Sotez S; Gomez FA; Haan JL
    Electrophoresis; 2015 Aug; 36(16):1825-9. PubMed ID: 25546700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral transport of solutes in microfluidic channels using electrochemically generated gradients in redox-active surfactants.
    Liu X; Abbott NL
    Anal Chem; 2011 Apr; 83(8):3033-41. PubMed ID: 21446653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What happens inside a fuel cell? Developing an experimental functional map of fuel cell performance.
    Brett DJ; Kucernak AR; Aguiar P; Atkins SC; Brandon NP; Clague R; Cohen LF; Hinds G; Kalyvas C; Offer GJ; Ladewig B; Maher R; Marquis A; Shearing P; Vasileiadis N; Vesovic V
    Chemphyschem; 2010 Sep; 11(13):2714-31. PubMed ID: 20730848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial electricity generation via microfluidic flow control.
    Li Z; Zhang Y; LeDuc PR; Gregory KB
    Biotechnol Bioeng; 2011 Sep; 108(9):2061-9. PubMed ID: 21495007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic devices for energy conversion: planar integration and performance of a passive, fully immersed H2-O2 fuel cell.
    Mitrovski SM; Elliott LC; Nuzzo RG
    Langmuir; 2004 Aug; 20(17):6974-6. PubMed ID: 15301473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using layer-by-layer assembly of polyaniline fibers in the fast preparation of high performance fuel cell nanostructured membrane electrodes.
    Michel M; Ettingshausen F; Scheiba F; Wolz A; Roth C
    Phys Chem Chem Phys; 2008 Jul; 10(25):3796-801. PubMed ID: 18563240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ potential distribution measurement in an all-vanadium flow battery.
    Liu Q; Turhan A; Zawodzinski TA; Mench MM
    Chem Commun (Camb); 2013 Jul; 49(56):6292-4. PubMed ID: 23736771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave decoration of Pt nanoparticles on entangled 3D carbon nanotube architectures as PEM fuel cell cathode.
    Sherrell PC; Zhang W; Zhao J; Wallace GG; Chen J; Minett AI
    ChemSusChem; 2012 Jul; 5(7):1233-40. PubMed ID: 22696244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast active mixer using polyelectrolytic ion extractor.
    Chun H; Kim HC; Chung TD
    Lab Chip; 2008 May; 8(5):764-71. PubMed ID: 18432347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membraneless microfluidic microbial fuel cell for rapid detection of electrochemical activity of microorganism.
    Wang HY; Su JY
    Bioresour Technol; 2013 Oct; 145():271-4. PubMed ID: 23415944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A water-activated pump for portable microfluidic applications.
    Good BT; Bowman CN; Davis RH
    J Colloid Interface Sci; 2007 Jan; 305(2):239-49. PubMed ID: 17081553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.