BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

615 related articles for article (PubMed ID: 18315014)

  • 21. Fast synthesis, formation mechanism, and control of shell thickness of CuS hollow spheres.
    Zhu H; Wang J; Wu D
    Inorg Chem; 2009 Aug; 48(15):7099-104. PubMed ID: 19585979
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of the interparticle i-motif for the controlled assembly of gold nanoparticles.
    Wang W; Liu H; Liu D; Xu Y; Yang Y; Zhou D
    Langmuir; 2007 Nov; 23(24):11956-9. PubMed ID: 17949023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrothermal synthesis of histidine-functionalized single-crystalline gold nanoparticles and their pH-dependent UV absorption characteristic.
    Liu Z; Zu Y; Fu Y; Meng R; Guo S; Xing Z; Tan S
    Colloids Surf B Biointerfaces; 2010 Mar; 76(1):311-6. PubMed ID: 19969442
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface-guided self-assembly of silver nanoparticles on edges of heterogeneous surfaces.
    Ruan W; Wang C; Ji N; Lu Z; Zhou T; Zhao B; Lombardi JR
    Langmuir; 2008 Aug; 24(16):8417-20. PubMed ID: 18656975
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct thermal decomposition of metal nitrates in octadecylamine to metal oxide nanocrystals.
    Wang DS; Xie T; Peng Q; Zhang SY; Chen J; Li YD
    Chemistry; 2008; 14(8):2507-13. PubMed ID: 18189257
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding mercapto ligand exchange on the surface of FePt nanoparticles.
    Bagaria HG; Ada ET; Shamsuzzoha M; Nikles DE; Johnson DT
    Langmuir; 2006 Aug; 22(18):7732-7. PubMed ID: 16922557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS.
    Polavarapu L; Xu QH
    Langmuir; 2008 Oct; 24(19):10608-11. PubMed ID: 18729527
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical and electrical properties of Au nanoparticles in two-dimensional networks:an effective cluster model.
    Su H; Li Y; Li XY; Wong KS
    Opt Express; 2009 Nov; 17(24):22223-34. PubMed ID: 19997469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of silica-gold nanocomposites and their porous nanoparticles by an in-situ approach.
    Kumar A; Pushparaj VL; Murugesan S; Viswanathan G; Nalamasu R; Linhardt RJ; Nalamasu O; Ajayan PM
    Langmuir; 2006 Oct; 22(21):8631-4. PubMed ID: 17014096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gold glyconanoparticles for mimics and measurement of metal ion-mediated carbohydrate-carbohydrate interactions.
    Reynolds AJ; Haines AH; Russell DA
    Langmuir; 2006 Jan; 22(3):1156-63. PubMed ID: 16430279
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biocatalytic growth of gold agglomerates on an electrode for aptamer-based electrochemical detection.
    He JL; Wu ZS; Hu P; Wang SP; Shen GL; Yu RQ
    Analyst; 2010 Mar; 135(3):570-6. PubMed ID: 20174712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent.
    Wei D; Qian W
    Colloids Surf B Biointerfaces; 2008 Mar; 62(1):136-42. PubMed ID: 17983734
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vast magnetic monolayer film with surfactant-stabilized Fe3O4 nanoparticles using Langmuir-Blodgett technique.
    Lee DK; Kim YH; Kim CW; Cha HG; Kang YS
    J Phys Chem B; 2007 Aug; 111(31):9288-93. PubMed ID: 17636981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical and structural properties of protein/gold hybrid bio-nanofilms prepared by layer-by-layer method.
    Pál E; Hornok V; Sebok D; Majzik A; Dékány I
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):276-83. PubMed ID: 20451360
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controllable self-assembly from fibrinogen-gold (fibrinogen-Au) and thrombin-silver (thrombin-Ag) nanoparticle interaction.
    Roy S; Dasgupta AK
    FEBS Lett; 2007 Nov; 581(28):5533-42. PubMed ID: 17983601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gold nanoparticles with a polymerizable surfactant bilayer: synthesis, polymerization, and stability evaluation.
    Alkilany AM; Murphy CJ
    Langmuir; 2009 Dec; 25(24):13874-9. PubMed ID: 20560552
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simultaneous synthesis and assembly of gold nanoparticles in cuttlebone-derived organic matrix: a "green" pathway for gold nanocomposite.
    Jia X; Qian W
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4370-6. PubMed ID: 19049027
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis.
    Suresh AK; Pelletier DA; Wang W; Broich ML; Moon JW; Gu B; Allison DP; Joy DC; Phelps TJ; Doktycz MJ
    Acta Biomater; 2011 May; 7(5):2148-52. PubMed ID: 21241833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. pH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker.
    Liu R; Zhang Y; Zhao X; Agarwal A; Mueller LJ; Feng P
    J Am Chem Soc; 2010 Feb; 132(5):1500-1. PubMed ID: 20085351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ion-specific aggregation of gold-DNA nanoparticles using the dG quartet hairpin 5'-d(G4T4G4).
    Seela F; Jawalekar AM; Chi L; Zhong D
    Chem Biodivers; 2005 Jan; 2(1):84-91. PubMed ID: 17191921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.