BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 18315347)

  • 21. A fiber optic probe design to measure depth-limited optical properties in-vivo with low-coherence enhanced backscattering (LEBS) spectroscopy.
    Mutyal NN; Radosevich A; Gould B; Rogers JD; Gomes A; Turzhitsky V; Backman V
    Opt Express; 2012 Aug; 20(18):19643-57. PubMed ID: 23037017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma.
    Arifler D; Schwarz RA; Chang SK; Richards-Kortum R
    Appl Opt; 2005 Jul; 44(20):4291-305. PubMed ID: 16045217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescence and reflectance device variability throughout the progression of a phase II clinical trial to detect and screen for cervical neoplasia using a fiber optic probe.
    Freeberg JA; Serachitopol DM; McKinnon N; Price R; Atkinson EN; Cox DD; MacAulay C; Richards-Kortum R; Follen M; Pikkula B
    J Biomed Opt; 2007; 12(3):034015. PubMed ID: 17614723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Properties of contact pressure induced by manually operated fiber-optic probes.
    Bregar M; Cugmas B; Naglic P; Hartmann D; Pernuš F; Likar B; Bürmen M
    J Biomed Opt; 2015; 20(12):127002. PubMed ID: 26720880
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Micro-optical fiber probe for use in an intravascular Raman endoscope.
    Komachi Y; Sato H; Aizawa K; Tashiro H
    Appl Opt; 2005 Aug; 44(22):4722-32. PubMed ID: 16075885
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study of on-line monitoring of lactate based on optical fibre sensor and in-channel mixing mechanism.
    Wu MH; Wang J; Taha T; Cui Z; Urban JP; Cui Z
    Biomed Microdevices; 2007 Apr; 9(2):167-74. PubMed ID: 17160706
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue.
    Schwarz RA; Arifler D; Chang SK; Pavlova I; Hussain IA; Mack V; Knight B; Richards-Kortum R; Gillenwater AM
    Opt Lett; 2005 May; 30(10):1159-61. PubMed ID: 15945140
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo scattering measurement of biological tissue by the use of a pyroelectric polymer transducer.
    Yamazaki M; Sato S; Saitoh D; Obara M
    Appl Opt; 2005 Mar; 44(9):1591-4. PubMed ID: 15813260
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monitoring of tissue thermal modification with a bundle-based full-field speckle analyzer.
    Zimnyakov DA; Sviridov AP; Kuznetsova LV; Baranov SA; Ignatieva NY
    Appl Opt; 2006 Jun; 45(18):4480-90. PubMed ID: 16778958
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distributed strain measurements using fiber Bragg gratings in small-diameter optical fiber and low-coherence reflectometry.
    Coric D; Lai M; Botsis J; Luo A; Limberger HG
    Opt Express; 2010 Dec; 18(25):26484-91. PubMed ID: 21164999
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation and detection of broadband coherent terahertz radiation using 17-fs ultrashort pulse fiber laser.
    Takayanagi J; Kanamori S; Suizu K; Yamashita M; Ouchi T; Kasai S; Ohtake H; Uchida H; Nishizawa N; Kawase K
    Opt Express; 2008 Aug; 16(17):12859-65. PubMed ID: 18711524
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of a compact reflective long-period grating sensor with a cladding-mode-selective fiber end-face mirror.
    Jiang M; Zhang AP; Wang YC; Tam HY; He S
    Opt Express; 2009 Sep; 17(20):17976-82. PubMed ID: 19907586
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance of calorimetric methods for the investigation of microbial systems in combination with additional sensors.
    Ullrich F; Winkelmann M; Hüttl R; Wolf G
    Anal Bioanal Chem; 2005 Nov; 383(5):747-51. PubMed ID: 15983768
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment.
    Lue N; Kang JW; Yu CC; Barman I; Dingari NC; Feld MS; Dasari RR; Fitzmaurice M
    PLoS One; 2012; 7(1):e30887. PubMed ID: 22303465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.
    Nagarajan VK; Yu B
    Lasers Surg Med; 2016 Sep; 48(7):686-94. PubMed ID: 27250022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measurement of internal tissue optical properties at ultraviolet and visible wavelengths: Development and implementation of a fiberoptic-based system.
    Wang Q; Yang H; Agrawal A; Wang NS; Pfefer TJ
    Opt Express; 2008 Jun; 16(12):8685-703. PubMed ID: 18545582
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy.
    Bargo PR; Prahl SA; Goodell TT; Sleven RA; Koval G; Blair G; Jacques SL
    J Biomed Opt; 2005; 10(3):034018. PubMed ID: 16229662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements.
    Arifler D; MacAulay C; Follen M; Richards-Kortum R
    J Biomed Opt; 2006; 11(6):064027. PubMed ID: 17212550
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental proof of the feasibility of using an angled fiber-optic probe for depth-sensitive fluorescence spectroscopy of turbid media.
    Liu Q; Ramanujam N
    Opt Lett; 2004 Sep; 29(17):2034-6. PubMed ID: 15455771
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Review of diverse optical fibers used in biomedical research and clinical practice.
    Keiser G; Xiong F; Cui Y; Shum PP
    J Biomed Opt; 2014 Aug; 19(8):080902. PubMed ID: 25166470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.