BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 18315527)

  • 1. S1-1 nuclear domains: characterization and dynamics as a function of transcriptional activity.
    Inoue A; Tsugawa K; Tokunaga K; Takahashi KP; Uni S; Kimura M; Nishio K; Yamamoto N; Honda K; Watanabe T; Yamane H; Tani T
    Biol Cell; 2008 Sep; 100(9):523-35. PubMed ID: 18315527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S1-1/RBM10: multiplicity and cooperativity of nuclear localisation domains.
    Xiao SJ; Wang LY; Kimura M; Kojima H; Kunimoto H; Nishiumi F; Yamamoto N; Nishio K; Fujimoto S; Kato T; Kitagawa S; Yamane H; Nakajima K; Inoue A
    Biol Cell; 2013 Apr; 105(4):162-74. PubMed ID: 23294349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paraspeckles: a novel nuclear domain.
    Fox AH; Lam YW; Leung AK; Lyon CE; Andersen J; Mann M; Lamond AI
    Curr Biol; 2002 Jan; 12(1):13-25. PubMed ID: 11790299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear speckles: a model for nuclear organelles.
    Lamond AI; Spector DL
    Nat Rev Mol Cell Biol; 2003 Aug; 4(8):605-12. PubMed ID: 12923522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Actin-based modeling of a transcriptionally competent nuclear substructure induced by transcription inhibition.
    Wang IF; Chang HY; Shen CK
    Exp Cell Res; 2006 Nov; 312(19):3796-807. PubMed ID: 17022973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordinated Dynamics of RNA Splicing Speckles in the Nucleus.
    Zhang Q; Kota KP; Alam SG; Nickerson JA; Dickinson RB; Lele TP
    J Cell Physiol; 2016 Jun; 231(6):1269-75. PubMed ID: 26496460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequestration of RBM10 in Nuclear Bodies: Targeting Sequences and Biological Significance.
    Wang LY; Xiao SJ; Kunimoto H; Tokunaga K; Kojima H; Kimura M; Yamamoto T; Yamamoto N; Zhao H; Nishio K; Tani T; Nakajima K; Sunami K; Inoue A
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear speckles: molecular organization, biological function and role in disease.
    Galganski L; Urbanek MO; Krzyzosiak WJ
    Nucleic Acids Res; 2017 Oct; 45(18):10350-10368. PubMed ID: 28977640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress-induced activation of c-Jun N-terminal kinase in sensory ganglion neurons: accumulation in nuclear domains enriched in splicing factors and distribution in perichromatin fibrils.
    Pena E; Berciano MT; Fernandez R; Crespo P; Lafarga M
    Exp Cell Res; 2000 Apr; 256(1):179-91. PubMed ID: 10739665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(A)+ RNAs roam the cell nucleus and pass through speckle domains in transcriptionally active and inactive cells.
    Molenaar C; Abdulle A; Gena A; Tanke HJ; Dirks RW
    J Cell Biol; 2004 Apr; 165(2):191-202. PubMed ID: 15117966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of the nuclear matrix component NuMA with the Cajal body and nuclear speckle compartments during transitions in transcriptional activity in lens cell differentiation.
    Gribbon C; Dahm R; Prescott AR; Quinlan RA
    Eur J Cell Biol; 2002 Oct; 81(10):557-66. PubMed ID: 12437190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear structures in Tribolium castaneum oocytes.
    Bogolyubov DS; Batalova FM; Kiselyov AM; Stepanova IS
    Cell Biol Int; 2013 Oct; 37(10):1061-79. PubMed ID: 23686847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topology of splicing and snRNP biogenesis in dinoflagellate nuclei.
    Alverca E; Franca S; Díaz de la Espina SM
    Biol Cell; 2006 Dec; 98(12):709-20. PubMed ID: 16875467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intranuclear distribution of poly(A) RNA determined by electron microscope in situ hybridization.
    Visa N; Puvion-Dutilleul F; Harper F; Bachellerie JP; Puvion E
    Exp Cell Res; 1993 Sep; 208(1):19-34. PubMed ID: 7689476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of poly(A)(+) RNA and mRNA export factors in interchromatin granule clusters of two-cell mouse embryos.
    Bogolyubova I; Bogolyubov D; Parfenov V
    Cell Tissue Res; 2009 Nov; 338(2):271-81. PubMed ID: 19756758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A change of developmental program induces the remodeling of the interchromatin domain during microspore embryogenesis in Brassica napus L.
    Seguí-Simarro JM; Corral-Martínez P; Corredor E; Raska I; Testillano PS; Risueño MC
    J Plant Physiol; 2011 May; 168(8):746-57. PubMed ID: 21216028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Cajal bodies in insect oocytes. II. New data on the molecular composition of cajal bodies in oocytes of the house cricket Acheta domesticus with special reference to interactions between cajal bodies and interchromatin granule clusters].
    Stepanova IS; Bogoliubov DS; Parfenov VN
    Tsitologiia; 2007; 49(1):5-20. PubMed ID: 17432602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear organization and gene expression.
    Spector DL
    Exp Cell Res; 1996 Dec; 229(2):189-97. PubMed ID: 8986596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p80-coilin: a component of coiled bodies and interchromatin granule-associated zones.
    Puvion-Dutilleul F; Besse S; Chan EK; Tan EM; Puvion E
    J Cell Sci; 1995 Mar; 108 ( Pt 3)():1143-53. PubMed ID: 7622600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Release of snRNP and RNA from transcription sites in adenovirus-infected cells.
    Aspegren A; Bridge E
    Exp Cell Res; 2002 Jun; 276(2):273-83. PubMed ID: 12027457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.