BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 18315572)

  • 1. Do recent findings in plant mitochondrial molecular and population genetics have implications for the study of gynodioecy and cytonuclear conflict?
    McCauley DE; Olson MS
    Evolution; 2008 May; 62(5):1013-25. PubMed ID: 18315572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paternal leakage sustains the cytoplasmic polymorphism underlying gynodioecy but remains invasible by nuclear restorers.
    Wade MJ; McCauley DE
    Am Nat; 2005 Nov; 166(5):592-602. PubMed ID: 16224724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of pollen versus seed flow on the maintenance of nuclear-cytoplasmic gynodioecy.
    Dufay M; Pannell JR
    Evolution; 2010 Mar; 64(3):772-84. PubMed ID: 19796151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling gynodioecy: novel scenarios for maintaining polymorphism.
    Bailey MF; Delph LF; Lively CM
    Am Nat; 2003 May; 161(5):762-76. PubMed ID: 12858283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytoplasmic male sterility: a window to the world of plant mitochondrial-nuclear interactions.
    Chase CD
    Trends Genet; 2007 Feb; 23(2):81-90. PubMed ID: 17188396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial heteroplasmy and paternal leakage in natural populations of Silene vulgaris, a gynodioecious plant.
    Pearl SA; Welch ME; McCauley DE
    Mol Biol Evol; 2009 Mar; 26(3):537-45. PubMed ID: 19033259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Merging theory and mechanism in studies of gynodioecy.
    Delph LF; Touzet P; Bailey MF
    Trends Ecol Evol; 2007 Jan; 22(1):17-24. PubMed ID: 17028054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling the maintenance of male-fertile cytoplasm in a gynodioecious population.
    Dufaÿ M; Touzet P; Maurice S; Cuguen J
    Heredity (Edinb); 2007 Sep; 99(3):349-56. PubMed ID: 17551525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Offspring sex ratio under inbreeding and outbreeding in a gynodioecious plant.
    Bailey MF; McCauley DE
    Evolution; 2005 Feb; 59(2):287-95. PubMed ID: 15807415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid male sterility in Mimulus (Phrymaceae) is associated with a geographically restricted mitochondrial rearrangement.
    Case AL; Willis JH
    Evolution; 2008 May; 62(5):1026-39. PubMed ID: 18315575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple CMS-restorer gene polymorphism in gynodioecious Plantago coronopus.
    van Damme JM; Hundscheid MP; Ivanovic S; Koelewijn HP
    Heredity (Edinb); 2004 Aug; 93(2):175-81. PubMed ID: 15138454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation of female frequency and cytoplasmic male-sterility gene frequency among natural gynodioecious populations of wild radish (Raphanus sativus L.).
    Murayama K; Yahara T; Terachi T
    Mol Ecol; 2004 Aug; 13(8):2459-64. PubMed ID: 15245417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Cytoplasmic male sterility and restoration of pollen fertility in higher plants].
    Ivanov MK; Dymshits GM
    Genetika; 2007 Apr; 43(4):451-68. PubMed ID: 17555121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of fine-scale genetic structure on male mating success in gynodioecious Beta vulgaris ssp. maritima.
    DE Cauwer I; Dufay M; Cuguen J; Arnaud JF
    Mol Ecol; 2010 Apr; 19(8):1540-58. PubMed ID: 20345690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A synthetic review of the theory of gynodioecy.
    Saur Jacobs M; Wade MJ
    Am Nat; 2003 Jun; 161(6):837-51. PubMed ID: 12858270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical Study of the Evolution of Gynodioecy with Cytoplasmic Inheritance under the Effect of a Nuclear Restorer Gene.
    Delannay X; Gouyon PH; Valdeyron G
    Genetics; 1981 Sep; 99(1):169-81. PubMed ID: 17249111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sex ratio variation among gynodioecious populations of sea beet: can it be explained by negative frequency-dependent selection?
    Dufay M; Cuguen J; Arnaud JF; Touzet P
    Evolution; 2009 Jun; 63(6):1483-97. PubMed ID: 19222569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for paternal transmission and heteroplasmy in the mitochondrial genome of Silene vulgaris, a gynodioecious plant.
    McCauley DE; Bailey MF; Sherman NA; Darnell MZ
    Heredity (Edinb); 2005 Jul; 95(1):50-8. PubMed ID: 15829984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nucleocytoplasmic conflict, a driving force for the emergence of plant organellar RNA editing.
    Castandet B; Araya A
    IUBMB Life; 2012 Feb; 64(2):120-5. PubMed ID: 22162179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolutionary ecology of cytonuclear interactions in angiosperms.
    Caruso CM; Case AL; Bailey MF
    Trends Plant Sci; 2012 Nov; 17(11):638-43. PubMed ID: 22784826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.