These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
70 related articles for article (PubMed ID: 1831584)
21. [The role of Ca2+-ATpase and its hydrophobic component in the release of Ca2+ from skeletal muscle sarcoplasmic reticulum]. Voĭtsitskiĭ VM; Fedorov AN; Kurskiĭ MD; Kucherenko NE; Tugaĭ VA Biokhimiia; 1988 Sep; 53(9):1427-32. PubMed ID: 2974308 [TBL] [Abstract][Full Text] [Related]
22. [Ca2+-dependent ATPases of the sarcoplasmic reticulum of skeletal and cardiac muscles and their ion-transporting fragments]. Levitskiĭ DO; Grishin EV; Biriukova TV; Lebedev AV; Nikolaeva LN Biull Vsesoiuznogo Kardiol Nauchn Tsentra AMN SSSR; 1981; 4(2):7-15. PubMed ID: 6459108 [TBL] [Abstract][Full Text] [Related]
23. Calcium transport and release by the sarcoplasmic reticulum. Katz AM; Shigekawa M; Repke DI; Hasselbach W Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():205-12. PubMed ID: 22900 [TBL] [Abstract][Full Text] [Related]
25. Lipid-protein interactions and calcium transport in sarcoplasmic reticulum. Hidalgo C Ann N Y Acad Sci; 1982; 402():561-2. PubMed ID: 6220655 [No Abstract] [Full Text] [Related]
27. Calcium uptake and release modulated by counter-ion conductances in the sarcoplasmic reticulum of skeletal muscle. Fink RH; Veigel C Acta Physiol Scand; 1996 Mar; 156(3):387-96. PubMed ID: 8729699 [TBL] [Abstract][Full Text] [Related]
28. Ca2+-uptake by tissue sections and biochemical characteristics of sarcoplasmic reticulum isolated from fish fast and slow muscles. McArdle HJ; Johnston IA Eur J Cell Biol; 1981 Aug; 25(1):103-7. PubMed ID: 6456907 [TBL] [Abstract][Full Text] [Related]
29. Protein-protein interactions in the sarcoplasmic reticulum calcium pump. Ikemoto N Ann N Y Acad Sci; 1982; 402():563-5. PubMed ID: 6220656 [No Abstract] [Full Text] [Related]
30. Dysfunction of the sarcoplasmic reticulum in polymyositis. Kalovidouris AE Arthritis Rheum; 1984 Mar; 27(3):299-304. PubMed ID: 6231032 [TBL] [Abstract][Full Text] [Related]
32. Relaxation of vertebrate skeletal muscle. A synthesis of the biochemical and physiological approaches. Gillis JM Biochim Biophys Acta; 1985 Jun; 811(2):97-145. PubMed ID: 3159424 [No Abstract] [Full Text] [Related]
33. Teaching active transport at the turn of the twenty-first century: recent discoveries and conceptual changes. Inesi G Biophys J; 1994 Mar; 66(3 Pt 1):554-60. PubMed ID: 8011889 [TBL] [Abstract][Full Text] [Related]
34. Corticospinal and peripheral responses to heat-induced hypo-hydration: potential physiological mechanisms and implications for neuromuscular function. Uddin N; Tallent J; Patterson SD; Goodall S; Waldron M Eur J Appl Physiol; 2022 Aug; 122(8):1797-1810. PubMed ID: 35362800 [TBL] [Abstract][Full Text] [Related]
35. Muscle Contractile Characteristics During Exhaustive Dynamic Exercise and Recovery. Rannou F; Nybo L; Andersen JE; Nordsborg NB Front Physiol; 2021; 12():660099. PubMed ID: 34276393 [TBL] [Abstract][Full Text] [Related]
36. Use of transcranial magnetic stimulation to assess relaxation rates in unfatigued and fatigued knee-extensor muscles. Vernillo G; Khassetarash A; Millet GY; Temesi J Exp Brain Res; 2021 Jan; 239(1):205-216. PubMed ID: 33140192 [TBL] [Abstract][Full Text] [Related]
37. Hydrogen Sulfide Donor NaHS Improves Metabolism and Reduces Muscle Atrophy in Type 2 Diabetes: Implication for Understanding Sarcopenic Pathophysiology. Bitar MS; Nader J; Al-Ali W; Al Madhoun A; Arefanian H; Al-Mulla F Oxid Med Cell Longev; 2018; 2018():6825452. PubMed ID: 30510624 [TBL] [Abstract][Full Text] [Related]
38. The excitation-contraction coupling mechanism in skeletal muscle. Calderón JC; Bolaños P; Caputo C Biophys Rev; 2014 Mar; 6(1):133-160. PubMed ID: 28509964 [TBL] [Abstract][Full Text] [Related]
39. Skeletal Muscle Regeneration and Oxidative Stress Are Altered in Chronic Kidney Disease. Avin KG; Chen NX; Organ JM; Zarse C; O'Neill K; Conway RG; Konrad RJ; Bacallao RL; Allen MR; Moe SM PLoS One; 2016; 11(8):e0159411. PubMed ID: 27486747 [TBL] [Abstract][Full Text] [Related]
40. The effects of accumulated muscle fatigue on the mechanomyographic waveform: implications for injury prediction. Tosovic D; Than C; Brown JM Eur J Appl Physiol; 2016 Aug; 116(8):1485-94. PubMed ID: 27260367 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]