These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 18316167)
1. Manipulation of caloric content but not diet composition, attenuates the deficit in learning and memory of senescence-accelerated mouse strain P8. Komatsu T; Chiba T; Yamaza H; Yamashita K; Shimada A; Hoshiyama Y; Henmi T; Ohtani H; Higami Y; de Cabo R; Ingram DK; Shimokawa I Exp Gerontol; 2008 Apr; 43(4):339-46. PubMed ID: 18316167 [TBL] [Abstract][Full Text] [Related]
2. Effect of dietary restriction on learning and memory impairment and histologic alterations of brain stem in senescence-accelerated mouse (SAM) P8 strain. Takahashi R; Komiya Y; Goto S Ann N Y Acad Sci; 2006 May; 1067():388-93. PubMed ID: 16804016 [TBL] [Abstract][Full Text] [Related]
3. Ameliorative effects of lotus seedpod proanthocyanidins on cognitive deficits and oxidative damage in senescence-accelerated mice. Gong Y; Liu L; Xie B; Liao Y; Yang E; Sun Z Behav Brain Res; 2008 Dec; 194(1):100-7. PubMed ID: 18652848 [TBL] [Abstract][Full Text] [Related]
4. Green Tea Extracts Attenuate Brain Dysfunction in High-Fat-Diet-Fed SAMP8 Mice. Onishi S; Meguro S; Pervin M; Kitazawa H; Yoto A; Ishino M; Shimba Y; Mochizuki Y; Miura S; Tokimitsu I; Unno K Nutrients; 2019 Apr; 11(4):. PubMed ID: 30979047 [TBL] [Abstract][Full Text] [Related]
5. Partial rescue of memory deficits induced by calorie restriction in a mouse model of tau deposition. Brownlow ML; Joly-Amado A; Azam S; Elza M; Selenica ML; Pappas C; Small B; Engelman R; Gordon MN; Morgan D Behav Brain Res; 2014 Sep; 271():79-88. PubMed ID: 24925454 [TBL] [Abstract][Full Text] [Related]
6. Influence of age-related learning and memory capacity of mice: different effects of a high and low caloric diet. Dong W; Wang R; Ma LN; Xu BL; Zhang JS; Zhao ZW; Wang YL; Zhang X Aging Clin Exp Res; 2016 Apr; 28(2):303-11. PubMed ID: 26138818 [TBL] [Abstract][Full Text] [Related]
7. Accelerated senescence prone mouse-8 shows early onset of deficits in spatial learning and memory in the radial six-arm water maze. Chen GH; Wang YJ; Wang XM; Zhou JN Physiol Behav; 2004 Oct; 82(5):883-90. PubMed ID: 15451654 [TBL] [Abstract][Full Text] [Related]
8. Effects of accelerated senescence on learning and memory, locomotion and anxiety-like behavior in APP/PS1 mouse model of Alzheimer's disease. Lok K; Zhao H; Zhang C; He N; Shen H; Wang Z; Zhao W; Yin M J Neurol Sci; 2013 Dec; 335(1-2):145-54. PubMed ID: 24095271 [TBL] [Abstract][Full Text] [Related]
9. Nobiletin, a citrus flavonoid, ameliorates cognitive impairment, oxidative burden, and hyperphosphorylation of tau in senescence-accelerated mouse. Nakajima A; Aoyama Y; Nguyen TT; Shin EJ; Kim HC; Yamada S; Nakai T; Nagai T; Yokosuka A; Mimaki Y; Ohizumi Y; Yamada K Behav Brain Res; 2013 Aug; 250():351-60. PubMed ID: 23714077 [TBL] [Abstract][Full Text] [Related]
10. Polygonum multiflorum extracts improve cognitive performance in senescence accelerated mice. Chan YC; Wang MF; Chang HC Am J Chin Med; 2003; 31(2):171-9. PubMed ID: 12856856 [TBL] [Abstract][Full Text] [Related]
11. [Experimental techniques for developing new drugs acting on dementia (8)--Characteristics of behavioral disorders in senescence-accelerated mouse (SAMP8): possible animal model for dementia]. Miyamoto M Nihon Shinkei Seishin Yakurigaku Zasshi; 1994 Oct; 14(5):323-35. PubMed ID: 7856329 [TBL] [Abstract][Full Text] [Related]
12. Impairment of CREB phosphorylation in the hippocampal CA1 region of the senescence-accelerated mouse (SAM) P8. Tomobe K; Okuma Y; Nomura Y Brain Res; 2007 Apr; 1141():214-7. PubMed ID: 17303091 [TBL] [Abstract][Full Text] [Related]
13. Relationship of impaired brain glucose metabolism to learning deficit in the senescence-accelerated mouse. Ohta H; Nishikawa H; Hirai K; Kato K; Miyamoto M Neurosci Lett; 1996 Oct; 217(1):37-40. PubMed ID: 8905734 [TBL] [Abstract][Full Text] [Related]
14. Spontaneous and artificial lesions of magnocellular reticular formation of brainstem deteriorate avoidance learning in senescence-accelerated mouse SAM. Yagi H; Akiguchi I; Ohta A; Yagi N; Hosokawa M; Takeda T Brain Res; 1998 Apr; 791(1-2):90-8. PubMed ID: 9593839 [TBL] [Abstract][Full Text] [Related]
15. Effect of Choto-san, a Kampo medicine, on impairment of passive avoidance performance in senescence accelerated mouse (SAM). Mizushima Y; Kan S; Yoshida S; Irie Y; Urata Y Phytother Res; 2003 May; 17(5):542-5. PubMed ID: 12748994 [TBL] [Abstract][Full Text] [Related]
16. A ketogenic diet increases brain insulin-like growth factor receptor and glucose transporter gene expression. Cheng CM; Kelley B; Wang J; Strauss D; Eagles DA; Bondy CA Endocrinology; 2003 Jun; 144(6):2676-82. PubMed ID: 12746332 [TBL] [Abstract][Full Text] [Related]
17. Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer's disease. Halagappa VK; Guo Z; Pearson M; Matsuoka Y; Cutler RG; Laferla FM; Mattson MP Neurobiol Dis; 2007 Apr; 26(1):212-20. PubMed ID: 17306982 [TBL] [Abstract][Full Text] [Related]
18. Effects of age and dietary restriction on lifespan and oxidative stress of SAMP8 mice with learning and memory impairments. Choi JH; Kim D J Nutr Health Aging; 2000; 4(3):182-6. PubMed ID: 10936908 [TBL] [Abstract][Full Text] [Related]
19. Deterioration in learning and memory of inferential tasks for evaluation of transitivity and symmetry in aged SAMP8 mice. Ohta A; Akiguchi I; Seriu N; Ohnishi K; Yagi H; Higuchi K; Hosokawa M Hippocampus; 2002; 12(6):803-10. PubMed ID: 12542231 [TBL] [Abstract][Full Text] [Related]
20. Long-term ginsenoside consumption prevents memory loss in aged SAMP8 mice by decreasing oxidative stress and up-regulating the plasticity-related proteins in hippocampus. Zhao H; Li Q; Zhang Z; Pei X; Wang J; Li Y Brain Res; 2009 Feb; 1256():111-22. PubMed ID: 19133247 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]