BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 18316311)

  • 21. Branch growth and leaf numbers of red maple (Acer rubrum L.) and red oak (Quercus rubra L.): response to defoliation.
    Heichel GH; Turner NC
    Oecologia; 1984 Apr; 62(1):1-6. PubMed ID: 28310729
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water relations of several hardwood species in response to throughfall manipulation in an upland oak forest during a wet year.
    Gebre GM; Tschaplinski TJ; Shirshac TL
    Tree Physiol; 1998 May; 18(5):299-305. PubMed ID: 12651369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem.
    Renninger HJ; Carlo N; Clark KL; Schäfer KV
    Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water-use efficiency in cork oak (Quercus suber) is modified by the interaction of water and light availabilities.
    Aranda I; Pardos M; Puértolas J; Jiménez MD; Pardos JA
    Tree Physiol; 2007 May; 27(5):671-7. PubMed ID: 17267358
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of landfill leachate irrigation on red maple (Acer rubrum L.) and sugar maple (Acer saccharum Marsh.) seedling growth and on foliar nutrient concentrations.
    Gordon AM; McBride RA; Fisken AJ; Bates TE
    Environ Pollut; 1989; 56(4):327-36. PubMed ID: 15092473
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Importance of protein quality versus quantity in alternative host plants for a leaf-feeding insect.
    Barbehenn RV; Niewiadomski J; Kochmanski J
    Oecologia; 2013 Sep; 173(1):1-12. PubMed ID: 23297046
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The impact of water and nutrient deficiencies on the growth, gas exchange and water relations of red oak and chestnut oak.
    Kleiner KW; Abrams MD; Schultz JC
    Tree Physiol; 1992 Oct; 11(3):271-87. PubMed ID: 14969951
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photosynthetic and Growth Response of Sugar Maple (Acer saccharum Marsh.) Mature Trees and Seedlings to Calcium, Magnesium, and Nitrogen Additions in the Catskill Mountains, NY, USA.
    Momen B; Behling SJ; Lawrence GB; Sullivan JH
    PLoS One; 2015; 10(8):e0136148. PubMed ID: 26291323
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acclimation of shade-developed leaves on saplings exposed to late-season canopy gaps.
    Naidu SL; DeLucia EH
    Tree Physiol; 1997 Jun; 17(6):367-76. PubMed ID: 14759845
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Variation in leaf and twig CO2 flux as a function of plant size: a comparison of seedlings, saplings and trees.
    Sendall KM; Reich PB
    Tree Physiol; 2013 Jul; 33(7):713-29. PubMed ID: 23872734
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phenolic compounds in red oak and sugar maple leaves have prooxidant activities in the midgut fluids of Malacosoma disstria and Orgyia leucostigma caterpillars.
    Barbehenn R; Cheek S; Gasperut A; Lister E; Maben R
    J Chem Ecol; 2005 May; 31(5):969-88. PubMed ID: 16124227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relationships between advance oak regeneration and biotic and abiotic factors.
    Fei S; Steiner KC
    Tree Physiol; 2008 Jul; 28(7):1111-9. PubMed ID: 18450575
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Higher growth temperatures decreased net carbon assimilation and biomass accumulation of northern red oak seedlings near the southern limit of the species range.
    Wertin TM; McGuire MA; Teskey RO
    Tree Physiol; 2011 Dec; 31(12):1277-88. PubMed ID: 21937670
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ecophysiological attributes of the native Acer saccharum and the exotic Acer platanoides in urban oak forests in Pennsylvania, USA.
    Kloeppel BD; Abrams MD
    Tree Physiol; 1995 Nov; 15(11):739-46. PubMed ID: 14965992
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Water relations of seedlings of three Quercus species: variations across and within species grown in contrasting light and water regimes.
    Castro-Díez P; Navarro J
    Tree Physiol; 2007 Jul; 27(7):1011-8. PubMed ID: 17403654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Water relations and growth of loblolly pine seedlings planted under a shelterwood and in a clear-cut.
    Dalton CT; Messina MG
    Tree Physiol; 1995 Jan; 15(1):19-26. PubMed ID: 14966007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chlorophyll fluorescence parameters, leaf traits and foliar chemistry of white oak and red maple trees in urban forest patches.
    Sonti NF; Hallett RA; Griffin KL; Trammell TLE; Sullivan JH
    Tree Physiol; 2021 Feb; 41(2):269-279. PubMed ID: 33313756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reduced translocation of current photosynthate precedes changes in gas exchange for Quercus rubra seedlings under flooding stress.
    Sloan JL; Islam MA; Jacobs DF
    Tree Physiol; 2016 Jan; 36(1):54-62. PubMed ID: 26655380
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Responses of sugar maple and hemlock seedlings to elevated carbon dioxide under altered above- and belowground nitrogen sources.
    Eller AS; McGuire KL; Sparks JP
    Tree Physiol; 2011 Apr; 31(4):391-401. PubMed ID: 21470979
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Responses of deciduous broadleaf trees to defoliation in a CO2 enriched atmosphere.
    Volin JC; Kruger EL; Lindroth RL
    Tree Physiol; 2002 May; 22(7):435-48. PubMed ID: 11986047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.