These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 1831752)
1. Coactivity of secondary spindle afferents and alpha 2, alpha 3, gamma 1 and gamma 2-motoneurons innervating anal and urinary bladder sphincters in humans. Schalow G Electromyogr Clin Neurophysiol; 1991; 31(4):223-41. PubMed ID: 1831752 [TBL] [Abstract][Full Text] [Related]
2. Action potential patterns of intrafusal gamma and parasympathetic motoneurons, secondary muscle spindle afferents and an oscillatory firing alpha 2-motoneuron, and the phase relations among them in humans. Schalow G Electromyogr Clin Neurophysiol; 1993 Dec; 33(8):477-503. PubMed ID: 8306918 [TBL] [Abstract][Full Text] [Related]
3. Oscillatory firing of single human sphincteric alpha 2 and alpha 3-motoneurons reflexly activated for the continence of urinary bladder and rectum. Restoration of bladder function in paraplegia. Schalow G Electromyogr Clin Neurophysiol; 1991 Sep; 31(6):323-55. PubMed ID: 1935758 [TBL] [Abstract][Full Text] [Related]
4. Conduction velocities and nerve fibre diameters of touch, pain, urinary bladder and anal canal afferents and alpha and gamma-motoneurons in human dorsal sacral roots. Schalow G Electromyogr Clin Neurophysiol; 1991 Aug; 31(5):265-96. PubMed ID: 1915037 [TBL] [Abstract][Full Text] [Related]
5. Phase relation changes between the firings of alpha and gamma-motoneurons and muscle spindle afferents in the sacral micturition centre during continence functions in brain-dead human and patients with spinal cord injury. Schalow G Electromyogr Clin Neurophysiol; 2010; 50(1):3-27. PubMed ID: 20349554 [TBL] [Abstract][Full Text] [Related]
6. Impulse patterns of single encoding sites of human secondary muscle spindle afferents. Schalow G Electromyogr Clin Neurophysiol; 1993 Dec; 33(8):451-64. PubMed ID: 8306916 [TBL] [Abstract][Full Text] [Related]
7. Phase correlated adequate afferent action potentials as a drive of human spinal oscillators. Schalow G Electromyogr Clin Neurophysiol; 1993 Dec; 33(8):465-76. PubMed ID: 8306917 [TBL] [Abstract][Full Text] [Related]
8. Nerve compound action potentials analysed with the simultaneously measured single fibre action potentials in humans. Schalow G; Zäch GA Electromyogr Clin Neurophysiol; 1994 Dec; 34(8):451-65. PubMed ID: 7882888 [TBL] [Abstract][Full Text] [Related]
9. Recruitment within the groups of gamma 1, alpha 2 and alpha 3-motoneurons in dogs and humans following bladder and anal catheter pulling. Schalow G Gen Physiol Biophys; 1992 Feb; 11(1):101-21. PubMed ID: 1499978 [TBL] [Abstract][Full Text] [Related]
10. Mono- and polysynaptic drive of oscillatory firing alpha 1 (FF) and alpha 2-motoneurons (FR) in a patient with spinal cord lesion. Schalow G; Zäch GA Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():57-74. PubMed ID: 8934197 [TBL] [Abstract][Full Text] [Related]
11. Reflex stimulation of continuously oscillatory firing alpha and gamma-motoneurons in patients with spinal cord lesion. Schalow G; Zäch GA Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():75-93. PubMed ID: 8934198 [TBL] [Abstract][Full Text] [Related]
12. Recruitment of alpha and gamma-motoneurons in rats, dogs and humans. Schalow G; Wattig B Electromyogr Clin Neurophysiol; 1993; 33(7):387-400. PubMed ID: 8261980 [TBL] [Abstract][Full Text] [Related]
13. The classification and identification of human somatic and parasympathetic nerve fibres including urinary bladder afferents and efferents is preserved following spinal cord injury. Schalow G Electromyogr Clin Neurophysiol; 2009; 49(6-7):263-86. PubMed ID: 19845099 [TBL] [Abstract][Full Text] [Related]
14. External loops of human premotor spinal oscillators identified by simultaneous measurements of interspike intervals and phase relations. Schalow G; Zäch GA Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():95-119. PubMed ID: 8934199 [TBL] [Abstract][Full Text] [Related]
15. Recruitment of motoneurons in the occasional firing mode in paraplegics. Schalow G Electromyogr Clin Neurophysiol; 1993; 33(7):401-8. PubMed ID: 8261981 [TBL] [Abstract][Full Text] [Related]
16. Interspike intervals of secondary muscle spindle and urinary bladder afferents in relation to the oscillation periods of sacral spinal oscillators for continence in man. Schalow G; Bersch U; Göcking K; Zäch GA Physiol Res; 1994; 43(1):7-18. PubMed ID: 8054341 [TBL] [Abstract][Full Text] [Related]
17. Detrusor-sphincteric dyssynergia in humans with spinal cord lesions may be caused by a loss of stable phase relations between and within oscillatory firing neuronal networks of the sacral micturition center. Schalow G; Bersch U; Michel D; Koch HG J Auton Nerv Syst; 1995 Apr; 52(2-3):181-202. PubMed ID: 7615897 [TBL] [Abstract][Full Text] [Related]
18. Ventral root afferent and dorsal root efferent fibres in dog and human lower sacral nerve roots. Schalow G Gen Physiol Biophys; 1992 Feb; 11(1):123-31. PubMed ID: 1499979 [TBL] [Abstract][Full Text] [Related]
19. Classification, oscillatory and alternating oscillatory firing of alpha 1 (FF) and alpha 2-motoneurons (FR) in patients with spinal cord lesion. Schalow G; Bersch U; Zäch GA; Warzok R Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():5-56. PubMed ID: 8934196 [TBL] [Abstract][Full Text] [Related]
20. Efferent and afferent fibres in human sacral ventral nerve roots: basic research and clinical implications. Schalow G Electromyogr Clin Neurophysiol; 1989; 29(1):33-53. PubMed ID: 2649371 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]