These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 18317521)

  • 1. A suprachoroidal electrical retinal stimulator design for long-term animal experiments and in vivo assessment of its feasibility and biocompatibility in rabbits.
    Zhou JA; Woo SJ; Park SI; Kim ET; Seo JM; Chung H; Kim SJ
    J Biomed Biotechnol; 2008; 2008():547428. PubMed ID: 18317521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transretinal electrical stimulation by an intrascleral multichannel electrode array in rabbit eyes.
    Nakauchi K; Fujikado T; Kanda H; Morimoto T; Choi JS; Ikuno Y; Sakaguchi H; Kamei M; Ohji M; Yagi T; Nishimura S; Sawai H; Fukuda Y; Tano Y
    Graefes Arch Clin Exp Ophthalmol; 2005 Feb; 243(2):169-74. PubMed ID: 15586287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surgical feasibility and biocompatibility of wide-field dual-array suprachoroidal-transretinal stimulation prosthesis in middle-sized animals.
    Lohmann TK; Kanda H; Morimoto T; Endo T; Miyoshi T; Nishida K; Kamei M; Walter P; Fujikado T
    Graefes Arch Clin Exp Ophthalmol; 2016 Apr; 254(4):661-73. PubMed ID: 26194404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo stimulation on rabbit retina using CMOS LSI-based multi-chip flexible stimulator for retinal prosthesis.
    Tokuda T; Asano R; Sugitani S; Terasawa Y; Nunoshita M; Nakauchi K; Fujikado T; Tano Y; Ohta J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5791-4. PubMed ID: 18003329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evoked cortical potentials after electrical stimulation of the inner retina in rabbits.
    Walter P; Heimann K
    Graefes Arch Clin Exp Ophthalmol; 2000 Apr; 238(4):315-8. PubMed ID: 10853930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transretinal electrical stimulation with a suprachoroidal multichannel electrode in rabbit eyes.
    Sakaguchi H; Fujikado T; Fang X; Kanda H; Osanai M; Nakauchi K; Ikuno Y; Kamei M; Yagi T; Nishimura S; Ohji M; Yagi T; Tano Y
    Jpn J Ophthalmol; 2004; 48(3):256-61. PubMed ID: 15175918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers.
    Lee SW; Seo JM; Ha S; Kim ET; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5859-66. PubMed ID: 19553608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the feasibility of a subretinal visual prosthesis: data from Yucatan micropig and rabbit.
    Schwahn HN; Gekeler F; Kohler K; Kobuch K; Sachs HG; Schulmeyer F; Jakob W; Gabel VP; Zrenner E
    Graefes Arch Clin Exp Ophthalmol; 2001 Dec; 239(12):961-7. PubMed ID: 11820703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transscleral implantation and neurophysiological testing of subretinal polyimide film electrodes in the domestic pig in visual prosthesis development.
    Sachs HG; Schanze T; Brunner U; Sailer H; Wiesenack C
    J Neural Eng; 2005 Mar; 2(1):S57-64. PubMed ID: 15876656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs.
    Majji AB; Humayun MS; Weiland JD; Suzuki S; D'Anna SA; de Juan E
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2073-81. PubMed ID: 10440263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual cortex responses to single- and simultaneous multiple-electrode stimulation of the retina: implications for retinal prostheses.
    Shivdasani MN; Fallon JB; Luu CD; Cicione R; Allen PJ; Morley JW; Williams CE
    Invest Ophthalmol Vis Sci; 2012 Sep; 53(10):6291-300. PubMed ID: 22899754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial characteristics of evoked potentials elicited by a MEMS microelectrode array for suprachoroidal-transretinal stimulation in a rabbit.
    Yan Y; Sui X; Liu W; Lu Y; Cao P; Ma Z; Chen Y; Chai X; Li L
    Graefes Arch Clin Exp Ophthalmol; 2015 Sep; 253(9):1515-28. PubMed ID: 25981117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo electrical stimulation of rabbit retina with a microfabricated array: strategies to maximize responses for prospective assessment of stimulus efficacy and biocompatibility.
    Rizzo JF; Goldbaum S; Shahin M; Denison TJ; Wyatt J
    Restor Neurol Neurosci; 2004; 22(6):429-43. PubMed ID: 15798362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of stimulus parameters and electrode geometry for an effective suprachoroidal retinal prosthesis.
    Shivdasani MN; Luu CD; Cicione R; Fallon JB; Allen PJ; Leuenberger J; Suaning GJ; Lovell NH; Shepherd RK; Williams CE
    J Neural Eng; 2010 Jun; 7(3):036008. PubMed ID: 20479521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronically implanted epidural electrodes in Göttinger minipigs allow function tests of epiretinal implants.
    Laube T; Schanze T; Brockmann C; Bolle I; Stieglitz T; Bornfeld N
    Graefes Arch Clin Exp Ophthalmol; 2003 Dec; 241(12):1013-9. PubMed ID: 14605905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-finger structure and pulsed-powering operation scheme for CMOS LSI-based flexible stimulator for retinal prosthesis.
    Tokuda T; Asano R; Hiyama K; Terasawa Y; Nishida K; Kitaguchi Y; Fujikado T; Tano Y; Ohta J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4212-5. PubMed ID: 19163641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optically powered single-channel stimulation implant as test system for chronic biocompatibility and biostability of miniaturized retinal vision prostheses.
    Schanze T; Hesse L; Lau C; Greve N; Haberer W; Kammer S; Doerge T; Rentzos A; Stieglitz T
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):983-92. PubMed ID: 17554818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of electrically evoked cortical potential thresholds generated with subretinal or suprachoroidal placement of a microelectrode array in the rabbit.
    Yamauchi Y; Franco LM; Jackson DJ; Naber JF; Ziv RO; Rizzo JF; Kaplan HJ; Enzmann V
    J Neural Eng; 2005 Mar; 2(1):S48-56. PubMed ID: 15876654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic implantation of newly developed suprachoroidal-transretinal stimulation prosthesis in dogs.
    Morimoto T; Kamei M; Nishida K; Sakaguchi H; Kanda H; Ikuno Y; Kishima H; Maruo T; Konoma K; Ozawa M; Nishida K; Fujikado T
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6785-92. PubMed ID: 21743012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subretinal implantation and testing of polyimide film electrodes in cats.
    Sachs HG; Schanze T; Wilms M; Rentzos A; Brunner U; Gekeler F; Hesse L
    Graefes Arch Clin Exp Ophthalmol; 2005 May; 243(5):464-8. PubMed ID: 15578200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.