BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 18317799)

  • 1. Fruit ripening in Vitis vinifera: apoplastic solute accumulation accounts for pre-veraison turgor loss in berries.
    Wada H; Shackel KA; Matthews MA
    Planta; 2008 May; 227(6):1351-61. PubMed ID: 18317799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal pattern of apoplastic solute accumulation and loss of cell turgor during ripening of Vitis vinifera fruit under field conditions.
    Wada H; Matthews MA; Shackel KA
    J Exp Bot; 2009; 60(6):1773-81. PubMed ID: 19386616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solute accumulation differs in the vacuoles and apoplast of ripening grape berries.
    Keller M; Shrestha PM
    Planta; 2014 Mar; 239(3):633-42. PubMed ID: 24310282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct in situ measurement of cell turgor in grape (Vitis vinifera L.) berries during development and in response to plant water deficits.
    Thomas TR; Matthews MA; Shackel KA
    Plant Cell Environ; 2006 May; 29(5):993-1001. PubMed ID: 17087481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional xylem in the post-veraison grape berry.
    Bondada BR; Matthews MA; Shackel KA
    J Exp Bot; 2005 Nov; 56(421):2949-57. PubMed ID: 16207748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ripening grape berries remain hydraulically connected to the shoot.
    Keller M; Smith JP; Bondada BR
    J Exp Bot; 2006; 57(11):2577-87. PubMed ID: 16868045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesocarp cell turgor in Vitis vinifera L. berries throughout development and its relation to firmness, growth, and the onset of ripening.
    Thomas TR; Shackel KA; Matthews MA
    Planta; 2008 Nov; 228(6):1067-76. PubMed ID: 18797922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contribution of flowering time and seed content to uneven ripening initiation among fruits within Vitis vinifera L. cv. Pinot noir clusters.
    Vondras AM; Gouthu S; Schmidt JA; Petersen AR; Deluc LG
    Planta; 2016 May; 243(5):1191-202. PubMed ID: 26874729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for substantial maintenance of membrane integrity and cell viability in normally developing grape (Vitis vinifera L.) berries throughout development.
    Krasnow M; Matthews M; Shackel K
    J Exp Bot; 2008; 59(4):849-59. PubMed ID: 18272917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sugar demand of ripening grape berries leads to recycling of surplus phloem water via the xylem.
    Keller M; Zhang Y; Shrestha PM; Biondi M; Bondada BR
    Plant Cell Environ; 2015 Jun; 38(6):1048-59. PubMed ID: 25293537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fruit ripening in Vitis vinifera: spatiotemporal relationships among turgor, sugar accumulation, and anthocyanin biosynthesis.
    Castellarin SD; Gambetta GA; Wada H; Shackel KA; Matthews MA
    J Exp Bot; 2011 Aug; 62(12):4345-54. PubMed ID: 21586429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of ripening among berries of the grape cluster reveals an altered transcriptional programme and enhanced ripening rate in delayed berries.
    Gouthu S; O'Neil ST; Di Y; Ansarolia M; Megraw M; Deluc LG
    J Exp Bot; 2014 Nov; 65(20):5889-902. PubMed ID: 25135520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in transcription of cytokinin metabolism and signalling genes in grape (Vitis vinifera L.) berries are associated with the ripening-related increase in isopentenyladenine.
    Böttcher C; Burbidge CA; Boss PK; Davies C
    BMC Plant Biol; 2015 Sep; 15():223. PubMed ID: 26377914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic analysis of temporal shifts in berry development between two grapevine cultivars of the Pinot family reveals potential genes controlling ripening time.
    Theine J; Holtgräwe D; Herzog K; Schwander F; Kicherer A; Hausmann L; Viehöver P; Töpfer R; Weisshaar B
    BMC Plant Biol; 2021 Jul; 21(1):327. PubMed ID: 34233614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermotolerance responses in ripening berries of Vitis vinifera L. cv Muscat Hamburg.
    Carbonell-Bejerano P; Santa María E; Torres-Pérez R; Royo C; Lijavetzky D; Bravo G; Aguirreolea J; Sánchez-Díaz M; Antolín MC; Martínez-Zapater JM
    Plant Cell Physiol; 2013 Jul; 54(7):1200-16. PubMed ID: 23659918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of stilbene synthase in Vitis vinifera L. during berry development.
    Fornara V; Onelli E; Sparvoli F; Rossoni M; Aina R; Marino G; Citterio S
    Protoplasma; 2008; 233(1-2):83-93. PubMed ID: 18615235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of isohydric and anisohydric Vitis vinifera L. cultivars reveals a fine balance between hydraulic resistances, driving forces and transpiration in ripening berries.
    Scharwies JD; Tyerman SD
    Funct Plant Biol; 2017 Feb; 44(3):324-338. PubMed ID: 32480567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell death in grape berries: varietal differences linked to xylem pressure and berry weight loss.
    Tilbrook J; Tyerman SD
    Funct Plant Biol; 2008 May; 35(3):173-184. PubMed ID: 32688771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The peripheral xylem of grapevine (Vitis vinifera). 1. Structural integrity in post-veraison berries.
    Chatelet DS; Rost TL; Shackel KA; Matthews MA
    J Exp Bot; 2008; 59(8):1987-96. PubMed ID: 18440931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tempranillo clones differ in the response of berry sugar and anthocyanin accumulation to elevated temperature.
    Arrizabalaga M; Morales F; Oyarzun M; Delrot S; Gomès E; Irigoyen JJ; Hilbert G; Pascual I
    Plant Sci; 2018 Feb; 267():74-83. PubMed ID: 29362101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.