BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 18318473)

  • 1. Support-vector-machine-based ranking significantly improves the effectiveness of similarity searching using 2D fingerprints and multiple reference compounds.
    Geppert H; Horváth T; Gärtner T; Wrobel S; Bajorath J
    J Chem Inf Model; 2008 Apr; 48(4):742-6. PubMed ID: 18318473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Searching for target-selective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors.
    Wassermann AM; Geppert H; Bajorath J
    J Chem Inf Model; 2009 Mar; 49(3):582-92. PubMed ID: 19249858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors.
    Geppert H; Humrich J; Stumpfe D; Gärtner T; Bajorath J
    J Chem Inf Model; 2009 Apr; 49(4):767-79. PubMed ID: 19309114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shannon entropy-based fingerprint similarity search strategy.
    Wang Y; Geppert H; Bajorath J
    J Chem Inf Model; 2009 Jul; 49(7):1687-91. PubMed ID: 19583222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Similarity searching of chemical databases using atom environment descriptors (MOLPRINT 2D): evaluation of performance.
    Bender A; Mussa HY; Glen RC; Reiling S
    J Chem Inf Comput Sci; 2004; 44(5):1708-18. PubMed ID: 15446830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian screening for active compounds in high-dimensional chemical spaces combining property descriptors and molecular fingerprints.
    Vogt M; Bajorath J
    Chem Biol Drug Des; 2008 Jan; 71(1):8-14. PubMed ID: 18069988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random reduction in fingerprint bit density improves compound recall in search calculations using complex reference molecules.
    Wang Y; Geppert H; Bajorath J
    Chem Biol Drug Des; 2008 Jun; 71(6):511-7. PubMed ID: 18466274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of support vector machine-based ranking strategies to search for target-selective compounds.
    Wassermann AM; Geppert H; Bajorath J
    Methods Mol Biol; 2011; 672():517-30. PubMed ID: 20838983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How do 2D fingerprints detect structurally diverse active compounds? Revealing compound subset-specific fingerprint features through systematic selection.
    Heikamp K; Bajorath J
    J Chem Inf Model; 2011 Sep; 51(9):2254-65. PubMed ID: 21793563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Introduction of a generally applicable method to estimate retrieval of active molecules for similarity searching using fingerprints.
    Vogt M; Bajorath J
    ChemMedChem; 2007 Sep; 2(9):1311-20. PubMed ID: 17562536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relevance of feature combinations for similarity searching using general or activity class-directed molecular fingerprints.
    Lounkine E; Hu Y; Batista J; Bajorath J
    J Chem Inf Model; 2009 Mar; 49(3):561-70. PubMed ID: 19434896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profile scaling increases the similarity search performance of molecular fingerprints containing numerical descriptors and structural keys.
    Xue L; Godden JW; Stahura FL; Bajorath J
    J Chem Inf Comput Sci; 2003; 43(4):1218-25. PubMed ID: 12870914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rendering conventional molecular fingerprints for virtual screening independent of molecular complexity and size effects.
    Nisius B; Bajorath J
    ChemMedChem; 2010 Jun; 5(6):859-68. PubMed ID: 20425878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How similar are similarity searching methods? A principal component analysis of molecular descriptor space.
    Bender A; Jenkins JL; Scheiber J; Sukuru SC; Glick M; Davies JW
    J Chem Inf Model; 2009 Jan; 49(1):108-19. PubMed ID: 19123924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of ranking methods for virtual screening in lead-discovery programs.
    Wilton D; Willett P; Lawson K; Mullier G
    J Chem Inf Comput Sci; 2003; 43(2):469-74. PubMed ID: 12653510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring peptide-likeness of active molecules using 2D fingerprint methods.
    Eckert H; Bajorath J
    J Chem Inf Model; 2007; 47(4):1366-78. PubMed ID: 17539624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apparent asymmetry in fingerprint similarity searching is a direct consequence of differences in bit densities and molecular size.
    Wang Y; Eckert H; Bajorath J
    ChemMedChem; 2007 Jul; 2(7):1037-42. PubMed ID: 17506042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Similarity search profiles as a diagnostic tool for the analysis of virtual screening calculations.
    Xue L; Godden JW; Stahura FL; Bajorath J
    J Chem Inf Comput Sci; 2004; 44(4):1275-81. PubMed ID: 15272835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the effectiveness of similarity searching.
    Hert J; Willett P; Wilton DJ; Acklin P; Azzaoui K; Jacoby E; Schuffenhauer A
    J Chem Inf Model; 2006; 46(2):462-70. PubMed ID: 16562973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of topological descriptors for similarity-based virtual screening using multiple bioactive reference structures.
    Hert J; Willett P; Wilton DJ; Acklin P; Azzaoui K; Jacoby E; Schuffenhauer A
    Org Biomol Chem; 2004 Nov; 2(22):3256-66. PubMed ID: 15534703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.