These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 18318558)

  • 1. Microscopic mechanism of adsorption in cylindrical nanopores with heterogenous wall structure.
    Kuchta B; Firlej L; Marzec M; Boulet P
    Langmuir; 2008 Apr; 24(8):4013-9. PubMed ID: 18318558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of adsorption in cylindrical nanopores: the roles of fluctuations and correlations in stabilizing the adsorbed phase.
    Kuchta B; Firlej L; Maurin G
    J Chem Phys; 2005 Nov; 123(17):174711. PubMed ID: 16375561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grand canonical Monte Carlo simulation of argon adsorption at the surface of silica nanopores: effect of pore size, pore morphology, and surface roughness.
    Coasne B; Pellenq RJ
    J Chem Phys; 2004 Feb; 120(6):2913-22. PubMed ID: 15268439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption and structure of benzene on silica surfaces and in nanopores.
    Coasne B; Alba-Simionesco C; Audonnet F; Dosseh G; Gubbins KE
    Langmuir; 2009 Sep; 25(18):10648-59. PubMed ID: 19670890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary Condensation in Pores with Energetically Heterogeneous Walls: Density Functional versus Monte Carlo Calculations.
    Reszko-Zygmunt J; Pizio O; Rzysko W; Sokolowski S; Sokolowska Z
    J Colloid Interface Sci; 2001 Sep; 241(1):169-177. PubMed ID: 11502119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of binary adsorption on heterogeneous surfaces characterized by a quasi-gaussian adsorption energy distribution.
    Nieszporek K; Szabelski P; Drach M
    Langmuir; 2005 Aug; 21(16):7335-41. PubMed ID: 16042463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasi one-dimensional nanopores in single-wall carbon nanohorn colloids using grand canonical Monte Carlo simulation aided adsorption technique.
    Ohba T; Kanoh H; Yudasaka M; Iijima S; Kaneko K
    J Phys Chem B; 2005 May; 109(18):8659-62. PubMed ID: 16852025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic characterization of fluids confined in heterogeneous pores by monte carlo simulations in the grand canonical and the isobaric-isothermal ensembles.
    Puibasset J
    J Phys Chem B; 2005 Apr; 109(16):8185-94. PubMed ID: 16851957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling micelle-templated mesoporous material SBA-15: atomistic model and gas adsorption studies.
    Bhattacharya S; Coasne B; Hung FR; Gubbins KE
    Langmuir; 2009 May; 25(10):5802-13. PubMed ID: 19099416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Some remarks on the calculation of the pore size distribution function of activated carbons.
    Gauden PA; Terzyk AP; Kowalczyk P
    J Colloid Interface Sci; 2006 Aug; 300(2):453-74. PubMed ID: 16690070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption mechanism of carbon dioxide in faujasites: grand canonical monte carlo simulations and microcalorimetry measurements.
    Maurin G; Llewellyn PL; Bell RG
    J Phys Chem B; 2005 Aug; 109(33):16084-91. PubMed ID: 16853044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics of hydrogen adsorption in slit-like carbon nanopores at 77 K. Classical versus path-integral Monte Carlo simulations.
    Kowalczyk P; Gauden PA; Terzyk AP; Bhatia SK
    Langmuir; 2007 Mar; 23(7):3666-72. PubMed ID: 17323981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of adsorption in nanopores.
    Kuchta B; Firlej L; Maurin G
    J Mol Model; 2005 Sep; 11(4-5):293-300. PubMed ID: 15889289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of Fluids in Pores Formed between Two Hard Cylinders.
    Bryk P; Lajtar L; Pizio O; Sokolowska Z; Sokolowski S
    J Colloid Interface Sci; 2000 Sep; 229(2):526-533. PubMed ID: 10985831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and adsorption of water in nonuniform cylindrical nanopores.
    Torrie GM; Lakatos G; Patey GN
    J Chem Phys; 2010 Dec; 133(22):224703. PubMed ID: 21171692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A grand canonical Monte Carlo study of capillary condensation in mesoporous media: effect of the pore morphology and topology.
    Coasne B; Pellenq RJ
    J Chem Phys; 2004 Aug; 121(8):3767-74. PubMed ID: 15303945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grand canonical Monte Carlo simulation of the adsorption isotherms of water molecules on model soot particles.
    Moulin F; Picaud S; Hoang PN; Jedlovszky P
    J Chem Phys; 2007 Oct; 127(16):164719. PubMed ID: 17979383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte-Carlo multiscale simulation study of argon adsorption/desorption hysteresis in mesoporous heterogeneous tubular pores like MCM-41 or oxidized porous silicon.
    Puibasset J
    Langmuir; 2009 Jan; 25(2):903-11. PubMed ID: 19063620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of proton adsorption at heterogeneous oxide/electrolyte interface. Prediction of the surface potential using Monte Carlo simulations and 1-pK approach.
    Zarzycki P; Charmas R; Szabelski P
    J Comput Chem; 2004 Apr; 25(5):704-11. PubMed ID: 14978713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water adsorption in ion-bearing nanopores.
    Lakatos G; Patey GN
    J Chem Phys; 2007 Jan; 126(2):024703. PubMed ID: 17228962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.